
Crystal Reports™ 8.5
Developer’s Guide

Seagate Software IMG Holdings, Inc.
915 Disc Drive
Scotts Valley

California, USA 95066

©=2001 Seagate Software Information Management Group Holdings, Inc., 915 Disc
Drive, Scotts Valley, California, USA 95066. All rights reserved.

Seagate, Seagate Software, Crystal Reports, Crystal Enterprise, Crystal Analysis,
Seagate Info, Seagate Holos and the Seagate logo are trademarks or registered
trademarks of Seagate Software Information Management Group Holdings, Inc. and/
or Seagate Technology, Inc. All other trademarks referenced are the property of their
respective owner.

Documentation Issue 1. Febuary 2001.

No part of this documentation may be stored in a retrieval system, transmitted or
reproduced in any way, except in accordance with the terms of the applicable software
license agreement. This documentation contains proprietary information of Seagate
Software IMG Holdings, Inc., and/or its suppliers.

Contents
Chapter 1: What’s New for Developers
Web Reporting .. 2
Increased value of the Crystal Enterprise Web Component Server 2

Complete XML support for the Web .. 3

Improved interactivity with parameters .. 4

Customizable DHTML Report Viewer ... 4

Display web reports independent of server location .. 4

Extend reporting abilities with additional applications ... 5

Additional Web reporting features ... 5

Report Designer Component 8.5 (RDC) .. 5

Crystal Report Viewer ... 8

Additional information .. 8

Chapter 2: Integration Methods
Overview ... 10

Integration methods .. 10

The Report Designer Component .. 11
Visual Basic and Office 2000 (VBA) Developers .. 11

Visual InterDev Developers ... 12

Visual C++ Developers ... 12

Evolution of Integration Capabilities of Crystal Reports .. 12

The Best Tool for Your Needs ... 14

Chapter 3: Introducing the Report Designer Component
The Report Designer Component .. 16
Design time ... 16

Runtime .. 16
Book title i

RDC Architecture .. 17

Combinations of RDC Components ... 19

Adding the RDC to your project .. 20

How to Get Additional Information .. 20
Crystal Reports User’s Guide ... 20

Help System .. 21

The Seagate Software Web Site ... 21

Object Browser ... 21

Properties Window .. 21

Sample Reports ... 22

Sample Applications .. 22

Report Wizard ... 25

Complex Applications ... 27

Chapter 4: Quick Start for using the RDC
Overview .. 30

Bullet Point Quick Start .. 30

Open an existing report .. 31

Create and modify a report ... 33

Chapter 5: RDC Data Access
Overview .. 40

The Data Explorer ... 41
ODBC ... 41
Database Files ... 42
More Data Sources .. 42

Active Data Sources .. 42
ADO ... 42

DAO ... 43
ii Book title

RDO ... 43

Crystal Data Object (CDO) .. 44

Data Definition Files ... 45

Data Environments .. 45
Microsoft Data Link (UDL) files ... 46

Report templates using unbound fields .. 46

Database Drivers .. 47
Crystal Active Data Driver ... 47

Chapter 6: Understanding the RDC Object Model
Overview .. 50

A high level overview .. 50

The next level .. 51

The Primary Objects and Collections .. 51

The Application object .. 53

The Report object ... 53
The Areas collection ... 53

The Sections collection ... 53

The ReportObjects collection .. 53

The FieldDefinitions collection ... 54

The Subreport Object .. 54

The Database Object .. 54
The DatabaseTables collection .. 55

The DatabaseFieldDefinitions collection ... 55

Object Considerations .. 55
The Application Object ... 55

The Report Object ... 56

The Field Object ... 56

The Database and Database Tables Objects .. 56
Book title iii

The Subreport Object .. 57
The CrossTabObject ... 58

Collection Considerations ... 58
The ReportObjects Collection ... 58
The Sections Collection ... 59

Event Considerations ... 60
The Format event for the Section object .. 60
The Visual Basic Initialize and Terminate events .. 62

Chapter 7: RDC Programming
Special Considerations .. 64
Object naming considerations ... 64
Scope considerations ... 64
Index considerations ... 65
Dual Interface considerations .. 65

Two methods to access an object in a report
or subreport .. 66
Referencing objects in a report .. 66
Referencing objects in a subreport ... 68

Runtime examples ... 70

Working with Cross-Tabs .. 70
Modifying a cross-tab at runtime ... 70

Working with Data sources ... 71
Changing an ADO data source location – new methods 71
Adding a data source and a field using AddOLEDBSource 72
Setting the data source for a subreport ... 72
Connecting to OLEDB providers ... 74
Connecting to a secure Access session .. 75

Working with Formatting .. 76
Using Report Variables .. 76

Formatting a section or report object conditionally .. 77
iv Book title

Working with Formulas/Selection Formulas 78
Passing a Selection Formula at Runtime .. 78
Passing a Formula at runtime ... 78

Changing a subreport’s record selection formula at runtime 79

Referencing a report formula using the formula name .. 79

Working with Grouping .. 80
Changing the existing group's condition field .. 80

Adding a new group to the report .. 81

Adding a group sort field ... 81

Modifying a group’s sort direction at runtime ... 82

Working with parameter fields ... 82

Working with OLE objects .. 84
Setting the location of an OLE object ... 84

Working with Sorting .. 85
Changing the existing sort's condition field ... 85

Adding a new sort field to a report .. 85

Working with Summary Fields .. 86
How to change summary field kind .. 86

Working with Text Objects ... 87
Simple and complex text objects ... 87

Changing the contents of a Text Object ... 87

Chapter 8: Programming the Crystal Report Viewers
Enhancements to the Report Viewer ... 90

Application Development with Crystal Report Viewers 90

Crystal Report Viewer for ActiveX ... 91
Adding the Report Viewer to a Visual Basic project .. 92

Using the CRViewer object .. 92
Book title v

The Crystal Report Viewer Java Bean ... 98
Adding the Report Viewer Bean to the project .. 99

Creating a simple applet with the Report Viewer .. 99

Chapter 9: Programming the Embeddable Crystal Reports
Designer Control
Overview .. 102

Creating a Microsoft Visual Basic sample application with
the Embeddable Designer ... 102
Step 1: Creating the user interface ... 103

Step 2: Writing the code .. 104

Step 3: Running the Embeddable Designer application 107

Creating a Microsoft Visual C++ sample application with
the Embeddable Designer ... 108
Step 1: Creating the User Interface .. 108

Step 2: Adding member variables and member functions 110

Step 3: Writing the code .. 112

Step 4: Running the Embeddable Designer application 116

Designing reports in the Embeddable Designer 117
Step 1: Adding a data source to the report ... 117
Step 2: Adding fields and grouping to the report .. 117

Chapter 10: Migrating to the RDC from the OCX
Overview .. 120
Summary ... 120

OCX .. 120
Code Comparison between the OCX and RDC .. 121
OCX and RDC sample application comparison ... 121

OCX sample application ... 122

RDC sample application .. 124
vi Book title

Chapter 11: Working with Visual C++ and Visual InterDev
Overview .. 128

Using the RDC with Visual C++ .. 128
Printing a Report through Visual C++ ... 128
Opening and Printing a Crystal Report through the RDC 129

Using the RDC with Visual InterDev ... 130
Installation .. 130

Index ... 133
Book title vii

viii Book title

What’s New for Developers 1

With the release of Crystal Reports version 8.5 developers
edition, Crystal Reports continues to improve the flexibility
and power of the Report Designer Component, along with
it’s web reporting capabilities. New components and
features allow you to enhance your users reporting
experience and increase the availability of Crystal Reports.

This chapter introduces the new features and
enhancements, which fall into three key cateories.
� Report Designer Component (RDC)
� Crystal Report Viewer Control
� Web Reporting.
Crystal Reports Developer’s Guide 1

Web Reporting
Web Reporting
To better meet your web reporting needs, Crystal Reports now integrates fully
with Crystal Enterprise, a web-based report management tool that works within
your company’s existing web infrastructure.

If you purchased the Professional or Developer edition of Crystal Reports, then
you also received the Crystal Enterprise Standard CD. This additional CD is
included in the box with Crystal Reports, along with five free concurrent access
licenses of Crystal Enterprise Standard.
� Improved interactivity with parameters
� Customizable DHTML Report Viewer
� Display web reports independent of server location
� Extend reporting abilities with additional applications

Increased value of the Crystal Enterprise Web Component Server
Use the newly re-designed and enhanced Web Component Server (WCS) from
Crystal Enterprise to power your web-reporting solution and to replace the older
WCS from Crystal Reports 8. Crystal Enterprise Standard provides significant
improvements and enhancements over the version 8 WCS.

Run the Web Component Server on any machine
Install the Crystal Enterprise Standard CD on whichever machine you want to
coordinate your web reports. With Crystal Enterprise Standard, you no longer
need to install and run Crystal Reports and the WCS on your web server.

If you need a reporting solution with greater scalability, use Crystal Enterprise
Professional, which can be installed on as many machines as are necessary
(whereas Crystal Enterprise Standard is limited to installation on a single
machine). Further, with Crystal Enterprise Professional, you can specify the server
pieces you want running on each machine.

Scale your reporting framework to meet increasing demands
Crystal Enterprise provides you with a scalable, web-based solution for managing
the access and delivery of hundreds or thousands of mission-critical Crystal
reports to every decision-maker—across the enterprise and beyond.

As your company’s web reporting needs increase, you can upgrade seamlessly to
Crystal Enterprise Professional without having to reinstall; you can also add more
licenses and components so that Crystal Enterprise grows right along with you.

Schedule reports to maintain up-to-date information
Schedule important reports to run on a regular basis so that everyone has access to
the most current information about your enterprise.
2 Crystal Reports Developer’s Guide

1 What’s New for Developers
Publish reports to the Web in seconds

With just a few easy steps, you can publish your reports to the Web for viewing by
all with the Report Publishing Wizard.

Manage folders for sharing reports
Share reports across the enterprise or across the Web by publishing them to the
default Guest favorites folder on the Automated Process Scheduler (APS). Users
can also publish to other folders, as determined by the Administrator.

Administer easily from one central console
By consolidating administrative tasks, the Crystal Management Console (CMC)
makes administering your web reporting solution quick and easy—regardless of
the size of your enterprise.

Use the CMC to gain immediate control over what can or cannot be seen, run, or
managed by everybody. You define all users’ viewing and managing privileges for
particular reports.

Integrate Crystal Reports performance with existing IT investments
Trust your Crystal web reporting solution to work to its full potential with your
existing web server investment.

Crystal Enterprise Standard has improved web server support, including
compatibility with Domino web servers through DSAPI interface, and Apache
servers through a DSO (Dynamic Shared Object) module on Solaris and Linux.
Crystal Enterprise Standard also supports CGI on Solaris and Linux.

Use scripting on the Crystal Enterprise WCS
The Crystal Enterprise Web Component Server now provides complete support
for scripting.

Complete XML support for the Web
Crystal Reports now fully supports the Extensible Markup Language (XML) adopted
by the World Wide Web Consortium (W3C) for delivering content over the Internet.

XML is emerging as the standard data format for the whole data-related industry
because it’s recognized across applications and across platforms. Keeping pace
with the current advance in technology, Crystal Reports allows you to report off
existing XML data and to export your work to XML format.

Access XML data at runtime

Use the Report Designer Component to access XML data streams at run time and
pass that information to objects in report applications.
Crystal Reports Developer’s Guide 3

Web Reporting
Note: For information on using XML, refer to the new “XML” chapter of the
Crystal Reports User’s Guide.

Export report data straight to XML

Export your report data to XML format quickly at runtime. This allows you to send
the data to other eCommerce applications used to read and manipulate information.

New properties have been added to the ExportOptions object to support these new
features. These properties are:
� XMLAllowMultiplePages
� XMLFileName

Note: For more information see “ExportOptions Object Properties” in the Crystal
Reports Developers Help (CrystalDevHelp.chm).

Improved interactivity with parameters
Using parameters not only enables user-driven reporting, but also increases report
performance, especially over the Web. Create multi-purpose reports to ensure that
everyone receives the right information quickly.

All of Crystal Reports’ web-enabled report viewers have been improved to allow
report designers and end users to utilize parameters to their full potential over the
Web. Whether users prefer the Java, ActiveX, or DHTML viewers, they can
interactively regulate the information they see by accepting default report parameters,
picking from listed options, specifying multiple values, or entering ranges.

Customizable DHTML Report Viewer
Customize the Crystal Reports Dynamic HTML viewer to integrate seamlessly with
the design of an existing eCommerce web site or corporate intranet. The DHTML
viewer exposes the operations of its toolbar (via JavaScript), thereby giving report
designers the ability to customize both its workings and its look-and-feel.

The enhanced DHTML viewer is so flexible that users can view reports, drill down
on charts, link to on-demand subreports, or quickly export valuable data—all
without even seeing that their experience is powered by Crystal Reports.

Display web reports independent of server location
Use Relative URLs to share your reports and their associated report objects on any
server, in any directory. Each report remains independent of its actual location,
because Relative URLs eliminate dependence upon any particular server or virtual
directory.
4 Crystal Reports Developer’s Guide

1 What’s New for Developers
Extend reporting abilities with additional applications
With Crystal Enterprise Standard, use the ePortfolio, other samples, or any client
application designed by your Administrator (using the SDK) to access shared reports.

Additional Web reporting features

HTML and DHTML export

The performance of the HTML and DHTML export has been greatly improved.

Re-distribute the ASP Web Report Server

The enhanced ASP Web Report Server (rptserver.asp) is no longer dependent
upon the Web Component Server, so developers can easily distribute their ASP
web applications. (Please see “License.hlp” for redistribution rights.)

Facilitate administration with the license manager

Keep track of your Crystal Reports licenses and key codes with the License
Manager (available only with Crystal Reports Developer Edition). This new
administrative tool makes it easy for you to ensure that your product installation
always meets your reporting needs. It also allows you to check the number of
concurrent user licenses being used in the ASP environment. Access the License
Manager from the Crystal Reports Tools program group on the Start menu.

Please note that the Report Designer Component will work only within the
concurrent license limit when used as a reporting server.

Note: For more information see “Licence Manager” in the License help (License.hlp).

Report Designer Component 8.5 (RDC)
Designed for Microsoft Visual Studio and other COM-based development
environments, the feature-rich Report Designer Component 8.5 (RDC) gives
developers unprecedented control over report layout and formatting for web and
Windows application reporting.

Reflecting the enhanced features of the Crystal Report Engine, the RDC now
supports most of the new Crystal Reports features, including PDF export, XML
export and data access, alerting, summaries for hierarchical groups, and many more.

Embed a Crystal Reports Designer in your application

Your users can now design or edit reports at runtime with the Embeddable
Designer. This easy-to-use ActiveX control provides the full power of Crystal
Crystal Reports Developer’s Guide 5

Report Designer Component 8.5 (RDC)
Reports to your application. The control is placed on a form, or in a container
within the form, and displays a new or existing report in design mode. This
presents the user with an interactive environment in which to design or edit the
report. The Embeddable Designer allows users to:
� add data sources
� add database fields
� create and add formulas
� create and add parameters
� group data
� summarize data
� add charts
� add subreports
� add special fields
� format fields and sections.

Note: For more information see “Embeddable Crystal Reports Designer Control
Object Model“, and “Programming the Embeddable Designer Control“ in the
Crystal Reports Developers Help (CrystalDevHelp.chm).

Create and modify Report Alerts

Report Alerts are custom messages created in either the Crystal Reports Designer, the
Report Designer Component, or the Embeddable Crystal Reports Designer Control.
Report Alerts may indicate action to be taken by the user or information about report
data. For more information see Report Alerts in the Crystal Reports User Guide.

Two new collections and two new objects have been added to the RDC object
model to allow you to create, modify, and monitor Report Alerts at runtime. These
collections and objects are:
� ReportAlerts Collection
� ReportAlert Object
� ReportAlertInstances Collection
� ReportAlertInstance Object

Note: More information on the Report Alert collections and objects can be found
in the Crystal Reports Developers Help (CrystalDevHelp.chm).

Convert database drivers

The data source your report is pointing to can now be changed at runtime by
converting the database driver. You can have this change reflected immedialtely in
your application, or save the report, and have the change take effect the next time
it is refreshed.

For more information see the ConvertDatabaseDriver method in the Crystal
Reports Developers Help (CrystalDevHelp.chm).
6 Crystal Reports Developer’s Guide

1 What’s New for Developers
Re-import subreports
Subreports can be newly created in the main report or imported from an existing
report file. If the subreport is imported from an existing report file, it can be re-
imported at runtime using the ReImportSubreport method. When previewed,
printed, or exported, a re-imported subreport will reflect all changes made to the
formatting, grouping, and structure of the existing report file.

For more information see the ReImportSubreport method in the Crystal Reports
Developers Help (CrystalDevHelp.chm).

Summarize on hierarchical data
Make large, complex data sets easier to understand than ever by taking advantage
of the new ability to create Subtotals, Grand Totals, and Summary fields for
hierarchical groups: to do so, select the “Sum across hierarchy” option, which has
been added to the Insert Subtotal, Insert Summary, Insert Grand Total, and Change
Summary dialog boxes.

Hieracrchical summaries can be enabled at runtime through the
HierarchicalSummaryType property. This property has been added to the
following two objects:
� RunningTotalFieldDefinition Object
� SummaryFieldDefinition Object

Note: Morett information on the RunningTotalFieldDefinition object and the
SummaryFieldDefinition object can be found in the Crystal Reports Developers Help
(CrystalDevHelp.chm).

Export to paginated PDF, and paginated RTF
Export your reports—in whole or in part—directly to the popular Portable Document
Format (PDF), and then distribute these reports by email, over the Web, or in print.
Alternatively, take advantage of the new Rich Text Format (RTF) exporting feature,
which is based on the Crystal Reports Encapsulated Page Format (EPF).

In addition, Crystal Reports now supports page ranged export to PDF and RTF
formats.

New properties have been added to the ExportOptions object to support these new
features. These properties are:
� PDFExportAllPages
� PDFFirstPageNumber
� PDFLastPageNumber
� RTFExportAllPages
� RTFFirstPageNumber
� RTFLastPageNumber.

Note: For more information see “ExportOptions Object Properties” in the Crystal
Reports Developers Help (CrystalDevHelp.chm).
Crystal Reports Developer’s Guide 7

Crystal Report Viewer
Crystal Report Viewer
An integral part of the Report Designer Component, the Crystal Report Viewer
offers full control over the previewing of reports in both client and Web
environments. A new freeze pane feature and improved distribution further
enhance the viewer’s functionality.

Freeze panes in the Crystal Report Viewer

The ActiveX viewer now has a feature similar to the Freeze Pane feature found in
Microsoft Excel. In the ActiveX Viewer, right-click and select Freeze Pane from the
shortcut menu to freeze the report from the bottom-right corner of the selected
object. Unfreeze using the same menu. Scroll horizontally or vertically, and the
report data scrolls as it would in Excel: vertical scrolling scrolls the portion of the
report to the right of the selected object (above and below); horizontal scrolling
scrolls the portion of the report below the selected object (left and right of the object).

Improve runtime distribution

Distribution of the Crystal Report Viewer (Crviewer.dll) has been
simplified.Crviewer.dll is no longer dependent on the Urlmon.dll making for an
easier installation of the RDC with your application.

Additional information
Crystal Reports product news
http://www.seagatesoftware.com/products/crystalreports/

Crystal Reports demos
http://www.seagatesoftware.com/products/crystalreports/showme/

Crystal Enterprise product news
http://www.seagatesoftware.com/products/crystalenterprise/

Product information
http://www.seagatesoftware.com/products/

Developer Zone
http://www.seagatesoftware.com/products/dev_zone/

Online support, samples and tech briefs
http://support.seagatesoftware.com/homepage/

Training and consulting
http://www.seagatesoftware.com/services/

Seagate Software homepage
http://www.seagatesoftware.com/homepage/
8 Crystal Reports Developer’s Guide

Integration Methods 2

This chapter is to gives you an understanding of how
integrating Crystal Reports into your applications has
evolved. You will also learn the benefits of using the latest
technology—represented in the Report Design Component
(RDC). This technology will enable you to take full
advantage of the powerful Crystal Report Print Engine and
create the best applications available today.
Crystal Reports Developer’s Guide 9

Overview
Overview
Crystal Reports is the world standard for desktop and web reporting. The
Developer Edition includes many innovative features for developers who need to
integrate sophisticated reporting into their Visual Basic®, Visual C++®, Visual
J++®, Office, Java, Lotus Notes, and Delphi applications.

The methods developers use to integrate reporting into their applications have
evolved over time. Industry leaders such as Microsoft have focused their efforts on
integrating new technologies into their developer software to make it easier to
create powerful applications. As companies such as Microsoft have introduced
these advancements, Crystal Reports has kept pace to ensure developers can take
advantage of these advancements when using our software.

Note: Visit the Seagate Software Developer Zone web site at
http://www.seagatesoftware.com/products/dev_zone.

Click Support to get links for finding documentation and knowledge base articles
about integrating reporting in your applications.

Integration methods
You can choose to access the Crystal Report Print Engine and integrate Crystal
Reports’ functionality into your database applications in a variety of ways:
� Report Designer Component Runtime (RDC)
� Crystal Report Automation Server
� Crystal ActiveX® Control (OCX)
� Crystal Report Print Engine API
� Crystal Visual Component Library (VCL).

When they were first introduced, each of these methods represented the latest
technology available at that time. Today, you can take advantage of the full power
and functionality of Crystal Reports by using the Report Designer Component, our
most recent technology.

Method Introduced in
version Project Reference Name Description

Report Designer
Component

Crystal Reports
7

Crystal Report 8 ActiveX Designer
Runtime library (craxdrt.dll)

32-bit only COM object
model, dual interface,
apartment model

Crystal Reports
Automation
Server

Crystal Reports
6

Crystal Report Print Engine 8 Object
Library (cpeautl6.dll/cpeaut32.dll)

32- and 16-bit COM
object model, dispatch
only Interface for C
developers

Crystal ActiveX
Control (OCX)

Crystal Reports
4.5

ActiveX Control (crystl16.ocx/
crystl32.ocx)

32- and 16-bit OCX

Crystal Report
Print Engine API

Crystal Reports
3

Crystal Report API Interface, declares
encapsulated in GLOBAL32.bas
10 Crystal Reports Developer’s Guide

2 Integration Methods
The Report Designer Component
The Report Designer Component (RDC) offers a dual interface COM component
which is the most advanced technology available for developers. It is an ActiveX
Designer that utilizes the reporting power of Crystal Reports. If you’re creating
applications in popular environments such as Visual Basic, Visual C++, Visual
InterDev® and Office 2000 (VBA), you can use the RDC to efficiently create the
most powerful reporting functionality in your applications

Although the RDC is our latest integration technology, Crystal Reports 8 supports
the older integration methods (32-bit only). We recommend, however, that you
begin using the newest and best reporting technology available—the RDC—to
create powerful reports that support the entire range of functionality available
within Crystal Reports.

To better understand why the RDC offers the best solutions, it’s important to
understand its architecture and how it relates to different types of developers.

The RDC consists of three main components:
� Report Designer: for Visual Basic and Office 2000 (developer edition with VBA

6.0) developers, this component lets you create, view and modify reports
directly in the Visual Basic or VBA Integrated Development Environment (IDE).

� Automation Server: an extensive object model with hundreds of properties
and methods you can use to program a report.

� Report Viewer: used to preview reports on screen, the Report Viewer gives
you great control and flexibility over the viewed report. It’s a lightweight
ActiveX control that contains an extensive object model. The viewer is
customizable and allows you to add a custom toolbar if needed.

Visual Basic and Office 2000 (VBA) Developers
Because the report designer is an ActiveX designer, it is easy for Visual Basic and
VBA developers to use:
� The report designer is closely integrated with Visual Basic 5.0 and 6.0 and VBA

6.0, and it allows you to open, design, and customize reports directly from the
Visual Basic or VBA IDE.

� Report Experts guide you in creating the report you need, allowing you to
quickly and easily design reports.

� You can use familiar Visual Basic code to create even more advanced
functionality.

� The RDC is an easy way to give your applications powerful reporting
capabilities.
Crystal Reports Developer’s Guide 11

The Report Designer Component
Visual InterDev Developers
Many Visual InterDev developers are experienced with using Visual Basic, and are
therefore familiar with integrating reports into database applications. Developers
can use the same RDC automation server and Report Viewer in Visual InterDev as
they use in other COM-based environments such as Visual Basic and Visual C++
to access the features of Crystal Reports. This provides one object model that offers
the same control over the report engine in web applications as well as Windows
applications. Developers can save time since they can build a report once and
move it to either the desktop or the Web. Report Integration controls then give
Visual InterDev developers an easy way to integrate reports into ASP pages.

Visual C++ Developers
If you use a development environment such as Visual C++ that supports COM,
you can:
� create reports in Crystal Reports
� use the RDC's automation server and viewer to manipulate and preview those

reports at runtime.

You will save time writing code, and can use the RDC to integrate reporting in the
most logical and efficient way.

Evolution of Integration Capabilities of Crystal Reports
The integration technology available to developers has progressed in parallel with
advancements in the developer market. Crystal Reports has quickly adopted the
leading concepts and architecture implemented for Visual Basic, Visual C++, and
other development environments. The following is an overview of how the
application integration methods offered in each version of Crystal Reports have
evolved over time.

Crystal Report Print Engine API
Since Version 1, Crystal Reports has exposed the Report Engine functionality via a
C API that you could use to make direct Report Engine calls.

Using these direct Report Engine calls you can access more functionality than
offered with the OCX. However, because it was designed for C/C++, it wasn’t easy
to use the API inside Visual Basic and some of the API wasn’t available because of
Visual Basic limitations in creating C style structures.

As a Visual Basic developer, you needed to add more code—and in many cases
complex code with multiple parameters—into an application to execute a report.
This was especially time consuming if you were unfamiliar with API calls.

If you have used the Report Engine API, the RDC is appealing because it offers
additional functionality, and is a much easier way to experience the power of the
Crystal Report Print Engine.
12 Crystal Reports Developer’s Guide

2 Integration Methods
The Crystal Report Engine API is only available in standalone versions of Crystal
Reports (i.e. version 8). No new features will be added in future releases of Crystal
Reports.

The Crystal ActiveX Control (OCX)

The Crystal ActiveX Control (OCX) is one of the oldest development technologies
available to developers in Crystal Reports. When OCX was first released in Crystal
Reports 4.5, it was based on the latest ActiveX technology from Microsoft, thus
offering state-of-the-art reporting for Visual Basic developers. Today, however, its
capabilities pale in comparison to the power and flexibility available in the RDC.
� The OCX control lacks programming depth and complete Report Engine

functionality.
� While the Crystal Report Engine provides features that are conducive to a

hierarchical object model—where each report is broken down into sections
with objects—this type of hierarchy isn’t represented in an OCX control. At the
time of its original development, the OCX revolutionized report integration
because it provided developers with a graphical interface to integrate existing
reports. But all of the Report Engine features can’t be represented in the flat
model allowed by the OCX.

� In addition, the OCX is a wrapper around the Report Engine, which means it is
less efficient and requires the distribution of more runtime components than
using the RDC.

Today, the OCX supports only the smallest subsets of Report Engine functionality—
the most common properties and methods. Although it’s supported in newer
versions, no new features have been added since Crystal Reports 6.

If you’re a Visual Basic developer who has used the OCX, you will find the RDC
easier to use inside the familiar Visual Basic IDE and by taking advantage of
Report Creation experts.

Crystal Report Automation Server

Based on the Crystal Reports 6 Object Model, the Crystal Report Automation
Server uses a hierarchical object model, unlike the “flat” model of the OCX.
� The Automation Server provided the first object-oriented interface to the

Report Engine.
� It was also the first object model in Crystal Reports that allowed Visual

Basic developers to access all the Report Engine features, something C/C++
developers had enjoyed since the beginning.

It was built around the Report Engine DLL. It behaved as a translation layer, taking
Visual Basic code and converting it into Report Engine calls. Because of its inability
to directly access the Report Engine, the Crystal Report Automation Server wasn’t
as efficient as it could be.
Crystal Reports Developer’s Guide 13

The Best Tool for Your Needs
We’ve ensured backward compatibility in Crystal Reports 8 to allow you to
leverage applications created in the previous version. However, the Crystal Report
Automation Server no longer exposes all of the events and properties of the Report
Engine in Crystal Reports 8. Because the Report Designer Component is COM-
based, and an evolution of the Crystal Reports Automation Server, you will find it
easy to migrate from the Crystal Reports Automation Server to the RDC.

Report Designer Component (RDC)
The RDC—introduced in June 1998 as a component of Crystal Reports—represents
a major reengineering of the Crystal Report Print Engine. Unlike any of its
predecessors, the RDC is not a wrapper; it exposes all Report Engine objects
directly without any translation. The RDC is based on the same object model as the
Crystal Report Automation Server. Because it is not a wrapper, the RDC is a much
more efficient COM object that supports features such as dual interface, providing
a more efficient way of making calls to the Report Engine.

The primary advantage of using the RDC over other developer tools within Crystal
Reports is its code writing and formatting capabilities in popular development
environments such as Visual Basic. The RDC provides events that enable you to
manipulate the report at runtime. Within these event handlers, you can access text
or field objects to modify the output of a report based on user input. Setting text in
text objects or field objects, or dynamically changing pictures in picture objects, are
added features unique to this interface.

The Best Tool for Your Needs
We recommend that you use the RDC to take advantage of the best functionality
and features available. While we support applications created using other tools
like the OCX and the Crystal Report Print Engine APIs, the RDC offers more power
and is easier to use.

New features of the Crystal Report Print Engine are only available through the
RDC. If you’d like to integrate them into your applications, you must change the
code. Links to resources (technical briefs and tutorials) to help you migrate to the
RDC are located on the Seagate Software Developer Zone web site.

Visit the Seagate Software Developers Zone at
http://www.seagatesoftware.com/products/dev_zone

to find information on the resource that best suits your needs. Chapter 9, “Migrating
to the RDC from the OCX” on page 119 of this guide shows you how to move quickly
to the RDC from the OCX.

The RDC is the premium development method, and it will continue to be enhanced
for developers. The latest version of the RDC is included in Crystal Reports 8.5.
14 Crystal Reports Developer’s Guide

Introducing the Report Designer
Component 3

This chapter introduces the Report Designer Component
(RDC) and explains it’s architecture along with some
possible development scenarios. It also provides additional
sources for help and information on the RDC, including
sample applications that present the RDC in real-world
scenarios.
Crystal Reports Developer’s Guide 15

The Report Designer Component
The Report Designer Component
The Report Designer Component (RDC) is a powerful solution for Visual Basic
developers who quickly and easily integrate reporting into their database
applications. It’s an ActiveX designer object that packs the reporting power of
Crystal Reports into a lightweight add-in for Visual Basic 5.0 or 6.0. You can open,
design and customize reports within the Visual Basic IDE. In addition:
� Intuitive Report Experts make it flexible and efficient to connect to data and

integrate powerful reports into applications.
� With hundreds of report properties, methods and events, you have complete

control over your report designs, using familiar Visual Basic code.
� Report distribution is simplified through a small component count and free

runtime.
� Reports can be packaged within the applications' executable or stored outside

the application in the traditional (.rpt) format.

Note: Get the latest news about the Report Designer Component from the Seagate
Software Developer Zone web site at
http://www.seagatesoftware.com/products/dev_zone

Design time
At design time, the Report Designer Component provides a user interface that
closely integrates with the Visual Basic IDE. Through the user interface, you design
and manipulate reports and report data. This interface includes events that can be
directly programmed from within Visual Basic.

The Report Designer Component uses the Active Data Driver for connecting to
ISAM, ODBC, and SQL databases through Data Access Objects (DAO), Remote
Data Objects (RDO), ActiveX Data Objects (ADO), and Data Environments (Visual
Basic 6.0 only). You can design the data set from within Visual Basic, then apply it
to the report contained by the Report Designer Component.

When working in Visual Basic, you will often need to use the Report Viewer for
ActiveX as a user interface to display reports. The Report Viewer is an ActiveX
control that you can drop to a standard Visual Basic Form. The Report Viewer is
where your report is displayed at runtime.

Runtime
The user interface provided by the Report Designer Component at design time
does not appear in your application at runtime, or when it is compiled into an
executable file. Instead, the Report Designer Component is accessed directly by
your Visual Basic code. New for version 8.5 is the Embeddable Crystal Reports
Designer Control. This allows you to provide your users with the ability to design
or edit Crystal Reports within your application using the same interface as the
16 Crystal Reports Developer’s Guide

3 Introducing the Report Designer Component
design time control. However reports can be opened and saved only in the Crystal
Report format (.rpt) and not in the ActiveX Designer format (.dsr) of the design
time control.

The Report Designer object model provides a complete object hierarchy for direct
manipulation in Visual Basic. The object model can be accessed through both the
RDC runtime engine and the RDC design and runtime engine. See CR Automation
Server for more information.

The Active Data Driver is also available at runtime, through the Report object of
the Report Designer Component object model, and can be assigned a new set of
data based on user interaction with your application. You design a Recordset or
Resultset object in Visual Basic using the DAO, RDO, or ADO object model, and
pass it to the report.

Finally, the Report Viewer takes center stage at runtime, connecting to the Report
Designer Component and displaying the embedded report. With careful design
and placement on the Form, the Report Viewer appears as a window inside your
application.

RDC Architecture
If you aren’t familiar with the RDC, you should note that it consists of five
components. Together, these components enable you to create, design, edit,
program, and preview, print, or export your reports:

Report Designer

The Report Designer is integrated tightly within the Visual Basic 5.0 and 6.0 IDE,
enabling you to create, view, and modify reports without leaving Visual Basic.
This component was specifically created for Visual Basic developers.

Automation Server

There are two automation servers provided with the RDC. The Crystal Reports
ActiveX Designer Runtime Library (craxdrt.dll)—known as the RDC runtime
engine, and the Crystal Reports ActiveX Designer Design and Runtime Library
(craxddrt.dll)—known as the RDC design and runtime engine. Both offer the same
extensive object model with hundreds of properties and methods for you to use to
manipulate the report at runtime. See “Unification of the RDC object Model“ in the
Crystal Reports Developers Help (CrystalDevHelp.chm) for more information on when
to use each automation server.

Crystal Report Viewer

The Crystal Report Viewer is an ActiveX control that you can use to preview
reports on screen. The viewer is loaded with customization options to give you
great control over your interface and over the viewed report itself.
Crystal Reports Developer’s Guide 17

The Report Designer Component
Embeddable Crystal Reports Designer Control

The Embeddable Crystal Reports Designer Control (Embeddable Designer) is an
ActiveX control that you can use to allow your users to design and edit Crystal
Reports in your application at runtime.

Component Description

Crystal Report Designer UI
Component (craxdui.dll)

A COM (Component Object Model) component that provides
the user interface at design time for the user to interact with
and create or modify the report.

Crystal Report Designer
Design and Runtime Time
Component (craxddrt.dll)

An underlying COM component that provides services for the
user interface component. The component also encapsulates all
of the report objects and is responsible for all of the data
processing and report layout. Use this component with client
based applications that incorporate the Embeddable Designer.

Crystal Report Designer Run
Time Component (craxdrt.dll)

The component that encapsulates all of the report objects and is
responsible for all of the data processing and report layout. Use
this component with any Client based or server side application
that does not incorporate the Embeddable Designer.

Active Data Driver
(p2smon.dll)

A data access driver that provides access to various types of
object data sources including DAO, RDO, and ADO.

Crystal Report Viewer for
ActiveX (crviewer.dll)

An Active X control which can be drawn on a form and
manipulated at design time. It provides a rich object model
used to modify user interaction with the report at runtime. This
component is required only if a developer wants to provide on-
screen display of reports at runtime.

VB Form The Crystal Reports Report Viewer Control must be embedded
on a Visual Basic Form in order to display the report on screen.
The Create Report Expert can automatically add a Form with
the Report Viewer embedded to the project when you finish
designing a report with the Expert.

Data Set One of the following:
� Data Access Object (DAO) Recordset
� Remote Data Object (RDO) Resultset
� Active Data Object (ADO) Recordset
� VB Data Environment
� Crystal Data Object (CDO)
� Crystal Data Source Type Library object
� ODBC Direct
These objects do not need to be valid at design time. For
example, you could construct a report template at design time
without the data being available. This is handled through “Data
Definition Files” on page 45. However, the data set objects must
be present and valid at runtime to generate a report.
18 Crystal Reports Developer’s Guide

3 Introducing the Report Designer Component
Combinations of RDC Components
The three RDC components can be used together or individually, in any
combination. The following table identifies which of the components you need to
use in your project:

Using the Report Designer
with the Automation Server

� VB and VBA only
� for designing reports within IDE and manipulating the

reports with code
� not necessary to preview the reports
� reports can be printed or exported
� use the Crystal Formula Language, VB or VBA code for

expressions in the report.

Using all three RDC
components

� VB and VBA only
� want to design reports within IDE and manipulate the

reports with code
� reports can be previewed, printed or exported
� use the Crystal Formula Language, VB or VBA code for

expression in the report.

Using the Automation Server
and the Crystal Report Viewer

� VB and VBA, C++, Visual InterDev, Visual J++
� want to design reports using Crystal Reports, preview from

application, and manipulate the reports with code
� reports can be printed or exported
� use the Crystal Formula Language, VB or VBA code for

expressions in the report.

Using the Automation Server,
Embeddable Designer, and the
Crystal Report Viewer

� VB and VC++
� want to allow your users to design or edit their own Crystal

Reports
� reports can be saved, printed, exported and previewed.
� use the Crystal Formula Language, VB or VBA code for

expressions in the report.

Using the Automation Server
by itself.

� VB and VBA, C++, Visual InterDev, Visual J++
� want to design reports using Crystal Reports and

manipulate the reports with code
� reports can be printed or exported
� use the Crystal Formula Language, VB or VBA code for

expressions in the report.
Crystal Reports Developer’s Guide 19

How to Get Additional Information
Adding the RDC to your project
The installation program will attempt to add the menu item Add Crystal Reports
8.5 to the Project menu of the VB IDE when you install the RDC. If that menu item
appears, you simply select it to add the RDC to your project.

If the menu item does not appear on the Project menu, you will first need to add it
manually, and then you can add the RDC to your project.

To add the RDC to your project
1 Choose Components from the Project menu.

2 Click the Designers tab in the Components dialog box when it appears.

3 Select Crystal Reports 8.5 on the Designers tab. This will add the menu item to
the Project menu.

4 Finally, select Add Crystal Reports 8.5 from the Project menu.

The RDC is now ready to use within the VB IDE.

How to Get Additional Information
Seagate Software supplies an extensive set of tools to help you master the RDC
quickly and easily. These include:

“Crystal Reports User’s Guide” on page 20

“The Seagate Software Web Site” on page 21

“Object Browser” on page 21

“Properties Window” on page 21

“Sample Reports” on page 22

“Sample Applications” on page 22

Crystal Reports User’s Guide
Since the capabilities of the RDC mirror the capabilities of Crystal Reports, you can
use the Crystal Reports User’s Guide to learn about the RDC’s powerful reporting
capabilities. For example, if you want to learn the details of the Select expert, how
to link a subreport to its parent report, or just more general information on report
creation, you should refer to the User’s Guide. This documentation is available in
printed form as well as a searchable electronic (PDF) form on the CD. You can find
the User’s Guide (Usergde.pdf) in the Docsfolder on the CD.
20 Crystal Reports Developer’s Guide

3 Introducing the Report Designer Component
Help System
Crystal Reports comes with an extensive help system. The help files contain all of
the information from the printed documentation and considerable additional
information as well. You can find reference information about all of the properties,
methods and events in the RDC, all the calls and structures in the API, and much
more in the Help system (CRRDC.hlp and CrystalDevHelp.chm).

The Seagate Software Web Site
Seagate Software provides a wide range of developer support information and
tools on its web site at
http://www.seagatesoftware.com/products/dev_zone

The web site offers these support tools and more:
� downloadable files and product updates
� developer samples
� a comprehensive knowledge base showing solutions and workarounds to a

wide range of technical problems
� technical briefs, detailed documents that discuss complex issues and/or

explain how to use various sophisticated product features
� FAQs: quick answers to your most common questions
� Release Notes: details about known issues, product features, enhancements,

and fixes.

The web site is updated continually so you will always be able to find current
information to help you with your development challenges.

Object Browser
A source of support for many VB programmers is the VB Object Browser. Use the
Object Browser to navigate the RDC automation server object model (CRAXDRT),
the Report Viewer object model (CRVIEWERLibCtl), the various objects used in
your project (Project n), and the VB and data object models. The Object Browser
introduces you to the hierarchy of the object models, and provides you with useful
information about the various classes and members in the object models.

Properties Window
The RDC exposes each object in an RDC report. This means you can view all of the
design time properties and options in the Properties Window of the VB IDE. Simply
select an object in the report and you can see and set its various properties visually.
Crystal Reports Developer’s Guide 21

How to Get Additional Information
Sample Reports
The program includes many sample reports you can use to learn sophisticated
reporting techniques. With a full installation, you can find these samples in the
\Crystal Reports\Samples\Reports folder.

Sample Applications
Crystal Reports contains over 18 Visual Basic sample applications. These
applications show you how to use the RDC in real-world situations.

With a complete installation, you will find the sample applications in the
\\Seagate Software\Crystal Reports\Samples\En\Code\Visual Basic folder.
There are samples for C++ and the Web in the \Code folder. The sample
applications provide you with one of the most direct and tested methods for
learning the RDC.

The applications contain usable code that can be modified and plugged into your own
programs. They also present great ideas for using the RDC. By studying these ideas,
you may be able to generate new business by offering clients sophisticated capabilities.

Visual Basic Samples

The following sample applications have been created for Visual Basic developers:

Simple Application

Most of the sample applications focus on solving a single problem or a small set of
related problems. If you’re a first time user of the RDC, you’ll find the application
called Simple Demo a good place to start.

ADO Connection Methods

This application demonstrates the two new methods to add ADO data sources to
a report:
� AddADOCommand takes an active ADO connection and ADO command

object as parameters. In this example, a new connection is created to a
database, and the resulting recordset is assigned at runtime to the report.

� AddOLEDBSource takes as parameters the name of an active ADO connection
and the name of a table that can be accessed through that connection. In this
example, the connection setup through the VB Data Environment is used as a
data source.

Both methods can be used with either the VB Data Environment or another data
source created at runtime.

Note: Notice in the Designer that there is no data source attached to the report at
design time.
22 Crystal Reports Developer’s Guide

3 Introducing the Report Designer Component
Change Runtime Location of OLE Object

This application demonstrates how you can set the location of an OLE object at
Runtime using the SetOleLocation command.

This application takes three different OLE objects:
� a bitmap
� part of an Excel spreadsheet
� part of a Word document.

This application cycles through them so a different object gets printed each time
the Details section gets formatted.

Embeddable Designer Control

This application demonstrates how to include the Embeddable Crystal Reports
Designer Control in an applicaion. It shows how to add a new or existing report to
the Embeddable Designer, how to display the report in the Crystal Report Viewer,
and how to refresh the report in the Crystal Report Viewer so it displays any
changes made in the Embeddable Designer.

Employee Profiles

This application demonstrates how you can set and format the text in report text
objects at runtime.

Inventory Demo

The Inventory Demo is a sample application that displays a report. It shows you
how to use the Report Initialize section for report level manipulation. It also
includes how to change the BackColor of the report Details section conditionally
for those items that need to be ordered.

Load Picture Demo

The Load Picture application shows you how to load a picture into the report at
runtime. It also shows you how to change some of the values and properties of
some of the text objects in the Details section of the report at runtime.

The program also shows you ways to implement calculations and calculated fields
in the RDC. The two methods are:
� using the Crystal Formula Language
� using VB code in the Section_Format event procedure.

This example describes how to perform calculations in the Section_Format event
using VB.

Microsoft Office Samples

Visit the Seagate Software Developer Zone web site at
http://www.seagatesoftware.com/products/dev_zone
Crystal Reports Developer’s Guide 23

How to Get Additional Information
To search for Microsoft Office sample applications click Support, and then click the
Download Files and Updates link.

No Data in Report Event

This application demonstrates the new NoDataInReport event.

The "No Data" event is triggered when the data set in the report is empty. In this
sample, the code applies a filter to the data that causes the report to have no data.
It then traps the NoDataInReport event and displays a message box that allows the
user the option to view the report without any data or just to view a blank page.

Printer Settings

This application demonstrates how to change the report printer settings at runtime
using code.
� There are four new report properties that allow you to easily retrieve and set

PaperSize, PaperOrientation, PaperSource, and PrinterDuplex for the report
printer options. All of these are demonstrated.

� There is also a new method called PrinterSetup that provides a Windows
standard printer setup window to allow the user to change the printer
properties directly at runtime. This is demonstrated as well.

The two methods are independent of each other. For example, changing the
Windows standard printer setup will not alter the report printer settings and vice-
versa. These new properties and the new method give you much more control over
how the report is printed.

Report Object Creation API

This application demonstrates the use of the new Report Object Creation API.

The Creation API functions allow runtime creation of report objects, including text,
database field, unbound field, chart, special, box, cross-tab, BLOB field, line,
picture, summary, and subreport objects.
� You can add these report objects at runtime to an existing report that you

created in the RDC.
� You can also create a blank report at runtime and add these objects to that

blank report. This sample demonstrates the second method.

All properties that are normally available for each object at runtime are also
available for the objects you create.

This sample shows you how to create text, database field, unbound field,
summary, picture box and line objects. For information about more advanced uses
of the Creation API, please see the Pro Athlete Salaries sample application.

Report Variables

This application demonstrates the use of the new Report Variable capability.
24 Crystal Reports Developer’s Guide

3 Introducing the Report Designer Component
The RDC now includes Report Variables. These are “smart” variables that can be
used to maintain state when you are coding items such as running totals based on
a Section_Format event. These Crystal variables can be used in your VB code. They
understand what’s going on inside the report formatting process at any given time,
and they enable you to do more of your report-oriented coding exclusively in VB.

This sample describes how to use Report Variables to calculate totals based on only
part of the data. Since Report Variables accept any valid value from the VB
environment, you can use values that only exist at Runtime to change the
formatting of your report.

In this sample, there are three columns based on a database: one column of
currency values, one column of integer values, and one column of non-integer
values.
� The first column changes to a blue color when the sum of the values in the

column is greater than a random value. A total is displayed in the lower part of
frmMain showing the total of the values colored blue.

� Records in the second and third columns change color when the sum is greater
than a different random value. The sum is then reset. This can be useful if you
wish to start and restart a totalling operation in the middle of a report.

� A String Report Variable is used to build a string consisting of the first digit of
each green highlighted value. You could use this method to easily extract
individual string values from a report field.

Note: Report Variables can only be set and retrieved while the report is formatting.

Report Wizard
You can use the Report Wizard with the Report Creation API to enable users to
create entirely new reports at runtime and then view or save the report. When you
implement the Wizard, you save yourself the necessity of writing “create” code for
each of the objects your users put into their new report. This application shows you
how easily you can implement the Wizard in your code.

You can also use the Report Wizard as a starting point for creating a custom report
wizard that allows you to set your own defaults for report creation.

Search and Select Experts

This application shows you how to control the Search and Select Wizards in the
Report Viewer using code.

The Search and Select Wizards allow advanced filtering and highlighting of data
displayed in the ActiveX viewer. In this sample, two different methods of using the
Search and Select Wizards are demonstrated:
� Two command buttons on the main form display a search or select wizard

with predefined fields and ranges already set for the user. The only displayed
fields and ranges are those that have been added at runtime.
Crystal Reports Developer’s Guide 25

How to Get Additional Information
� The Search and Select Expert buttons on the top right part of the viewer are
over-ridden, allowing you to specify default criteria to search for.
Alternatively, the default search and select experts can also be displayed.

Simple Demo

This simple demonstration presents an introduction to the Report Designer. Many
of the basic methods used in manipulating and creating reports are discussed in the
code comments. This is a good starting point if you are unfamiliar with the RDC.

Unbound fields

This application shows you how to create a report template using the new
Unbound Fields capability. It also shows you how to bind the fields at runtime to
a data source that you also create at runtime.

In this sample, there are five unbound fields created in the report. Notice that there
is no data source added to the report at design time at all—the data source is
created and added to the report at runtime.

You can also use Unbound fields in formulas, although this sample does not
demonstrate this use.

Unbound fields give you great flexibility in your programming. They even allow
you to create a single report template that can be bound to a variety of data sources
at runtime in response to user input. This enables you to create a wide range of
custom reports all from a single template. See the Pro Athlete Salaries application
for a demonstration of this capability.

Viewer

This simple application shows you how you can create your own Report Viewer
toolbar and manipulate the ActiveX viewer using your own custom buttons.

Viewer Runtime options

This application demonstrates the many ways you can manipulate the Report
Viewer at runtime. It also shows you how to implement the use of the Select Expert
and the Search Expert in the Viewer.

All of the check boxes on the main form correspond to viewer properties that you
can change at runtime. In this sample, there are more than 21 viewer properties
that are manipulated. Note that to enable the Select Expert and Search Expert, you
must reference the Crystal Select Expert OLE control module and you must place
the Select Expert Control on the form.

The Select/Search Expert is essentially invisible on the form and is located
immediately to the left of the About Sample Command Button in this sample.
26 Crystal Reports Developer’s Guide

3 Introducing the Report Designer Component
Complex Applications
The following three applications are large and complex. They each demonstrate
many of the RDC capabilities.

Xtreme Mountain Bikes

This application was included with Version 7. It has been updated in this version
to showcase many of the new RDC capabilities.

Pro Athlete Salaries

This application shows a very sophisticated use of the Create Report API,
Unbound Fields, and a previously-undocumented method for using the
Tables.Add method. This report is worth studying because it demonstrates the
powerful things you can do with the RDC through code alone.

Note: The Designer does not appear in the Project Explorer. This is because the
report is actually a template report created at runtime using Unbound Fields and
the Create API, and the fields are bound at runtime to a custom recordset
generated at runtime based on user input.

First Class Hotels

The sample demonstrates a number of Crystal Reports features that are new to
version 8, as well as possible advanced uses for some existing features.

The main form in the sample, frmMain, is used for managing the reservations.
Some features include:
� The report displayed in the window is automatically updated whenever a

reservation is added, the customer name changed, or the date range changed.
� Double-clicking on a customer name or room number in the report will bring

up a form containing information about that customer or room.
� Clicking on one of the two miniature notepad icons in this window will also

cause this same information report to be displayed.
� The billing report that can be displayed by double-clicking the report, or

clicking the notepad icons, only displays information between the start and
end dates shown at the bottom of the reservation form.

The Room form, frmRoom, contains these features:
� Allows adding/removing of hotel room numbers.
� Clicking on the miniature notepad icon in this window will cause the

information report to be displayed. The information will be displayed for all
dates that the room has been used and is not restricted by a start or end date.

The Price form, frmPrice, contains these features:
� Allows adding/removing of hotel room prices.
Crystal Reports Developer’s Guide 27

How to Get Additional Information
� Customer: Allows adding/editing/removing of customers.
� Clicking on the miniature notepad icon in this window will cause the information

report to be displayed. The information will be displayed for all dates that the
customer has stayed at the hotel and is not restricted by a start or end date.

This application uses many of the methods from earlier releases as well as this
release. Here is a list to help you determine if this application has the answers
you’re looking for (* denotes new in version 8):

Crystal Reports Viewer Object

Crystal Reports Report Object

Methods: Properties: Events:

PrintOut EventInfo.Text DblClicked

Refresh EventInfo.Type

ReportSource

ViewReport

Methods: Properties: Events:

*AddReportVariable Get and Set PaperSize *BeforeFormatPage

*GetReportVariable Get and Set
PaperOrientation

*EndFormatPage

*SetReportVariable *Get and Set
PrinterDuplex

Initialize

RecordSelectionFormula *Get and Set Papersource *NoData

*SetUnboundFieldSource Database.Tables().Location Section_Format

LeftMargin

RightMargin
28 Crystal Reports Developer’s Guide

Quick Start for using the RDC 4

This chapter helps you get started using the Report
Designer Component (RDC) in Microsoft Visual Basic.
Three examples provide you with the basic skills needed to
use the RDC. You will find a high-level explanation of the
steps required to add the RDC to a project, a tutorial on
adding an existing report to the RDC, and a tutorial on
creating and modifying a new report.
Crystal Reports Developer’s Guide 29

Overview
Overview
Using the RDC will add powerful reporting capabilities to your application, and
you can do it all from the Visual Basic IDE.

Note: For information on using the RDC with other development environments,
See Chapter 10, “Working with Visual C++ and Visual InterDev” on page 127.

The following three sections were designed to get you started with the RDC:

“Bullet Point Quick Start” on page 30.
If you only need minimal instructions for using the RDC, this section is for you. It
includes a higher level, bulleted explanation about how to create, view, and
manipulate a report through the RDC.

“Open an existing report” on page 31.
If you have created a report in the standalone version of Crystal Reports and you
want to open it through the RDC and preview it in the Report Viewer, you will find
this section useful. It includes a lower level, step-by-step approach.

“Create and modify a report” on page 33.
If you want to create, preview, and manipulate a report through the RDC, you will
find this section extremely useful. This is also a lower-level, step-by-step approach.
It mirrors the procedure of the Bullet Point Quick Start but describes each of the
bullet points in more detail.

If you have questions that are not answered by these samples, please see the
Sample Applications at \Crystal Reports\Samples\Code.

Bullet Point Quick Start
To add reporting capabilities to your application using the RDC:
� Add the RDC to your project

� With a complete install, the option Add Crystal Reports 8 appears on the
Project menu in the VB IDE. Select Add Crystal Reports 8.

� If the option does not appear, select Components from the Project menu
and check the Crystal Reports 8 option on the Designers tab. Then select
Add Crystal Reports 8 when it appears on the Project menu.

� Select a data source
When you add the RDC to your project, the program presents the Crystal
Report Gallery dialog box. If you’re not familiar with Crystal Reports, choose
the Using Report Expert option and choose Project data from the Data tab in the
Standard Report Expert when it appears. This enables you to select the newest
technology, the Active Data recordsets for building your report. Select one of
the ODBC(ADO) data sources from the combo box, add a new data source, or
supply a connection string for an ADO OLE DB connection.
30 Crystal Reports Developer’s Guide

4 Quick Start for using the RDC
� Create a report
From the Standard Report Expert, you can build your report by adding fields,
setting up grouping and totalling, specifying your sort options, adding charts
and selection criteria if you wish, and even adding a professionally designed
look. You can do that by using the various Expert tabs.

� Add the Report Viewer to your project
When you select Finish in the Standard Report Expert, the program
automatically adds a form to your project and installs the Report Viewer on the
form. It also writes the necessary code for displaying your report in the viewer
and resizing the viewer whenever the form is resized.
� If you don’t want the Viewer installed automatically, or if you don’t want

the Viewer form to be your start-up form, you can change those actions in
the Default Settings dialog box.

� You get to the Dialogue by right-clicking in the RDC and selecting Designer
and then Default Settings from the shortcut menu when it appears.

� Create a UI for users to modify the report at runtime

Now that you have a report, you may want to manipulate it with code based on
user input. If you haven’t done so already, here is the point where you could build
the UI for the user using Visual Basic.
� Write the code that does the modifications

Now you can write the code that ties the users UI selections to the report.
� Each object in the report is exposed in the Properties window of the VB IDE.
� Double-click any object and you can write code for the object.
� Double-click on a section of the report and you can write code that affects

the section and the objects in the section.
� By referencing an object name in your UI code or the object index through

one of the many Collections, you can manipulate that object directly based
on user input.

� Preview, print, or export the report.
When you have completed the above, you can run the application and preview,
print, or export the report using the UI controls you’ve set up to do it.

Now you have integrated the most powerful reporting tool into your application.

Open an existing report
In this example, you will open an existing report file in Visual Basic. This will
demonstrate how to import existing reports (*.RPT files) and enable you to become
familiar with the Report Designer Component user interface. This tutorial uses
Crystal Reports 8.5 and Microsoft Visual Basic 6.0.
Crystal Reports Developer’s Guide 31

Open an existing report
Ensure that you have completed the installation of the Report Designer
Component files and make note of the installation directory if you did not accept
the default selection.

To open a report directly within Visual Basic 6.0

1 Open Visual Basic and create a new Standard EXE project by selecting
Standard EXE from the start up dialog or selecting it from New Project under
the File menu.

2 Add the Report Designer Component to Visual Basic if not already added
during the installation process.

3 From the Project menu, select Components.

4 Click the Designers tab and check Crystal Reports 8. Click Apply and then
click Close. The Report Designer is now available in this project and any
projects you create in the future.

5 Now we need to insert the Report Designer into the project form. On the Project
menu, point to More ActiveX Designers and then click Add Crystal Reports 8.

6 The Crystal Report Gallery appears displaying the different types of Report
Experts that are available. Since you will be opening an existing report file,
click From an Existing Report. Click OK.

7 Browse to the report called World Sales Report at \Crystal
Reports\Sample\Reports\General Business\. Click Open. Depending on
your setup, you may be presented with a dialog that asks you about adding a
form at runtime. Click OK.

8 The Report Designer Component is added to your project and the report
layout is displayed in the design window. Report files created in any version
of Crystal Reports can be imported in this manner. Before you run the report,
right-click on Form2, and select View Code. You should see Visual Basic code
that looks like this:

Dim Report As New CrystalReport1

Private Sub Form_Load()

Screen.MousePointer = vbHourglass

CRViewer1.ReportSource = Report

CRViewer1.ViewReport

Screen.MousePointer = vbDefault

End Sub

Private Sub Form_Resize()

CRViewer1.Top = 0

CRViewer1.Left = 0

CRViewer1.Height = ScaleHeight

CRViewer1.Width = ScaleWidth

End Sub
32 Crystal Reports Developer’s Guide

4 Quick Start for using the RDC
This default code, inserted by the Report Designer Component, will point the
runtime Crystal Report Viewer at the report to display the results. This makes
it easy to flip between the report design window and the finished report. You
can add to or modify this code, but for now we’ll just view the report.

9 From the Run menu select Start (F5) or click on the Start button on the Visual
Basic toolbar. After a few seconds, you will see a form displaying the finished
report in the Crystal Report Viewer. You can resize the form by dragging the
lower right hand corner of the Viewer. You can save this project if you like, but
it will not be required to complete the steps in the next section.

Now that you have opened and viewed a report, feel free to go back and explore
some of the right-click and property settings in the Report Designer window. You
may also want to browse the CRViewer class of the CRVIEWERLibCtl object to see
some of the properties and methods that you can use to customize the appearance
of the viewer at runtime.

Create and modify a report
In this example, we’ll create and modify a simple report using the Report Designer
Component. This will guide you through the basic steps in connecting to a data
source and creating a report. The report you will be creating is a Sales by Region
report based on a Microsoft Access database. We'll use the Report Experts to help
create the report quickly and easily, then we'll modify some of its properties and
make it more interactive by adding some event-driven code.

This exercise only touches on a few of the hundreds of properties and methods
available but will give you an idea of how simple it is to fully integrate and
customize reports in your Visual Basic projects.

To Add the RDC to your project

1 Open Visual Basic and create a new Standard EXE project by selecting
Standard EXE from the start up dialog or selecting it from New Project under
the File menu.

2 Add the Report Designer Component to Visual Basic if not already added
during the installation process.

3 From the Project menu, select Components.

4 Click the Designers tab and check Crystal Reports 8. Click Apply and then
click Close. The Report Designer is now available in this project and any
projects you create in the future.

5 Now we need to insert the Report Designer into the project form. On the
Project menu, point to More ActiveX Designers and then click Add Crystal
Reports 8.5. (In some environments, Add Crystal Reports 8.5 will appear as an
option itself on the Project menu.)
Crystal Reports Developer’s Guide 33

Create and modify a report
To select a data source

1 Check Using Report Expert and select Standard. Click OK. The Standard Report
Expert appears. This window allows you to select from either Project or Other
data sources. Typically, you use a project-based data source. The Other option
enables you to use the native data drivers included with Crystal Reports.

2 We’ll connect to the ODBC data source using ADO. Click the Project button.

3 The Select Data Source window appears with ODBC selected by default. Select
Xtreme Sample Database from the list of data sources. To see which options
are available, click Advanced. The Advanced Options dialog appears. Click
OK to accept the default of connecting using ADO.

4 Now that you’ve specified the data source and connection method, you need
to specify which tables to use. Click Next in the Select Data Dialog. This brings
up the Select Recordset dialog.

5 Select Customer from the object list and click OK to return to the Data Tab. The
item ado should be displayed in the Tables list box.

To create a report

1 Now that you’ve selected the database and the table, you need to specify the
fields to include in the report. Click Next to move to the Fields tab.

2 Select the Customer Name database field from the Available Fields list, then
Click Add to add the field into the Fields to Display box. Do the same for the
Last Year’s Sales, City and Region fields.

3 Click on the Group tab and select the Region field, then click Add to add the
field into the Group By box. Do the same for the City field. This will group
your data by Region and, within each region, by City. By default, the Sort
Order for the Region and City Fields is in Ascending Order.

4 Click the Total tab. Because Last Year’s Sales is the only numeric field in the
report, the Report Expert automatically selects it for totaling.

5 Click the Top N tab. For the Region Tab, choose Sort All Groups based on Sum
of Last Year’s Sales. Do the same for the City tab.

6 Click the Chart tab and click the Pie in the Chart Type list on the Chart|Type
tab. Select the pie chart with 3D visual effect.

7 Click the Chart|Data tab. The Report Expert automatically selects to create the
chart based on the sum of Last Year’s Sales.

8 Click the Chart|Text tab. In the Title box, type “Sales by Region”.

9 Finally, to give the report a professional look, go to the Style tab in the main set
of Expert tabs and select the Executive, Trailing Break style. Click Finish. The
RDC creates your report.
34 Crystal Reports Developer’s Guide

4 Quick Start for using the RDC
To add the Report Viewer to your project

1 The Report Expert presents you with the option of adding a form with the
Crystal Report Viewer control and setting this as the start-up object. Click OK
to accept the defaults. The Expert will format the report and display it in the
design window.

2 Click the Start button on the Visual Basic toolbar or press F5 to run your
project. After a few seconds, you will see a form displaying the finished report
in the Crystal Report Viewer.

This exercise has shown the basic steps for creating a new report. Although you
don’t always have to use the Report Experts, they make connecting to your data
source and creating the initial report fast and easy. You can then alter the look and
feel of the report using the Report Designer window. Common tasks like field
formatting, adding text and modifying field positions can be accomplished by
dragging fields or altering their properties. These can be set using Visual Basic
code or in the Visual Basic object properties window.

Create a UI for users to modify the report at runtime

When you add report capabilities to your application, you provide the user with a
UI for customizing their reports (setting the date range for the report or deciding
whether they want to see a detail or summary report for example). Rather than
demonstrating how to build a UI (which is a VB procedure outside the scope of this
tutorial) the next section shows you how to customize the report by hard-coding
the modifications. With a UI, you would pass your user’s selections in place of the
hard code.

Write the code that does the modifications

This report is currently based on all regions. We’ll modify the selection criteria to
include only data from the USA. But first you may need to add a reference to
your project.

1 Close the Crystal Report Viewer.

2 From the Project menu select References.

3 Check the Microsoft ActiveX Data Objects Recordset 2.0 Library and click OK.

4 Double-click Form2 from your Project Explorer to open it. This form contains
the Report Viewer. Double-click on it to see the code in the main window. It
should look something like this:

This code should appear in the General Declarations section.

Dim Report As New CrystalReport1
Crystal Reports Developer’s Guide 35

Create and modify a report
This code should appear in the Form_Load event procedure. It tells the viewer
what report it should display and then it tells it to display (view) the report.

Private Sub Form_Load()

Screen.MousePointer = vbHourGlass

CRViewer1.ReportSource = Report

CRViewer1.ViewReport

Screen.MousePointer = vbDefault

End Sub

This code should appear in the Form_Resize event procedure, it resizes the viewer
every time the form is resized.

Private Sub Form_Resize()

CRViewer1.Top = 0

CRViewer1.Left = 0

CRViewer1.Height = ScaleHeight

CRViewer1.Width = ScaleWidth

End Sub

5 To add selection criteria to the report. Edit the "Form2" declarations and
"Form_Load" procedure to look like this:

Dim Report As New CrystalReport1

Dim rs As New ADOR.Recordset

Private Sub Form_Load()

 Screen.MousePointer = vbHourGlass

 rs.Open "Select * from customer where country = 'USA'", _

"xtreme sample database"

 Report.Database.SetDataSource rs,3,1

 CRViewer1.ReportSource = Report

 CRViewer1.ViewReport

 Screen.MousePointer = vbDefault

End Sub

This adds a query to select only the records with "USA" in the "Country" field.
The recordset that results from that query will be passed to the report engine
and the results displayed.

6 Run the report again to see the changes. Your report should only contain USA
data.

7 Now we'll add a text object to the report and manipulate it using code. In the
main Report Designer window, right-click just to the right of the graph in the
Report Header pane and point to Insert, then select Text Object.

8 Move the text object just above the pie graph. You may have to move the graph
down a bit first. Make note of the Name in the Properties window. In this
example, the name is "Text5" but the name in your project may be different.
36 Crystal Reports Developer’s Guide

4 Quick Start for using the RDC
9 Now we'll set the contents of the text object you just added. Open the "Section5"
code for editing in the Text Object by double-clicking on the Report Header
[Section5] and add some code to the "Section5" "Format" procedure as shown.

Private Sub Section5_Format(ByVal pFormattingInfo As Object)

Text5.SetText "Here is some text from my app"

Text5.Font.Italic = True

Text5.Font.Bold = True

Text5.Font.Size = 14

End Sub

10 This will set the text object, change the font to Italic, Bold 14 point and display
the results. Run the report again to see the changes.

To complete this exercise, you'll now add some event-driven code to explore how
you can make the run time viewer control more interactive.

11 With the Form 2 code window open, use the Object and Procedure list boxes to
select the "CRViewer1" object and add the "DrillOnGroup" and
"PrintButtonClicked" procedures to the "Form2" code. Edit these new
procedures as shown below:

Private Sub CRViewer1_DrillOnGroup(GroupNameList As

Variant, ByVal DrillType As

CRVIEWERLibCtl.CRDrillType, UseDefault As Boolean)

MsgBox "You're drilling down on the " &

GroupNameList(0) & " group!"

End Sub

Private Sub CRViewer1_PrintButtonClicked(UseDefault As Boolean)

MsgBox "You clicked the Print button!"

End Sub

12 The "DrillOnGroup" procedure is triggered when the user double-clicks on
any graph pie slice or report summary field. When this occurs, the text shown
will appear in a message box. The "PrintButtonClicked" procedure works
similarly when the viewer Print button is clicked. Try both of these procedures
to make certain your code works as expected.

Now that you've seen a few simple ways to modify a report, you may want to
explore some of the other properties and events in the report engine that you can
use in your application. For more sophisticated programming examples, consult
the sample applications. For more details on specific methods, properties, or
events, use the VB Object Browser or consult the developer’s help files.
Crystal Reports Developer’s Guide 37

Create and modify a report
38 Crystal Reports Developer’s Guide

RDC Data Access 5

This chapter explains data access through the Report
Designer Component (RDC), and describes how to connect
to a data source through the Data Explorer. It also provides
information on Active Data, the Microsoft Data
Environment, and the database drivers used by the RDC.
Crystal Reports Developer’s Guide 39

Overview
Overview
In response to the question, “What data can I use when building reports in the
RDC?”, the answer is, “You have virtually no limitations.” The RDC has been
designed to use virtually any data source with minimal work on your part.

The Report Designer Component supports data access through Data Access
Objects (DAO), Remote Data Objects (RDO), and ActiveX Data Objects (ADO).
Through these three access methods, you can connect to most ISAM, ODBC, and
SQL data sources available to Windows applications. In addition, you can create
DAO Recordsets, RDO Resultsets, or ADO Recordsets in Visual Basic, then replace
the data source used by a report at runtime by calling the SetDataSource method
of the RDC runtime Report object.

The Report Designer Component also provides the ability to design reports based
on Data Definition files, text files that define the fields, and field types of a database
without actually serving as a source of data. Using Data Definition files, you can
design a report without depending on the existence of a database at design time,
then dynamically create the data at runtime and assign it to the Report object of the
Report Designer Component.

If you have installed the full Crystal Reports product, you also have the ability to
use the Report Designer Component to connect to any data source that Crystal
Reports can connect to. In such a case, the Report Designer Component
implements the Crystal Reports user interface that you are already familiar with,
so you can quickly connect to any existing data.

Finally, the Report Designer Component also supports Data Environments in
Visual Studio 6.0.

Probably the best way to cover all of the data sources is to take a brief look at the
Data Explorer dialog box. This dialog box appears when you select Add Database
to Report or Set Location, and it lists data source options in a hierarchical tree view.

Visit the Library on the Seagate Software website to get documentation and
knowledge base articles about data access.
40 Crystal Reports Developer’s Guide

http://www.seagatesoftware.com/ipl/default.asp?product=SCRDeveloperHelp&version=8&language=EN&destination=library

5 RDC Data Access
The Data Explorer
The top three nodes in the Data Explorer were designed to make it more efficient
for you to return to favorite data sources, current connections, or data sources you
have used in the past. Those nodes are all intuitive, and they are discussed in depth
in the Crystal Reports User’s Guide. We’ll be discussing the bottom three nodes in
this chapter.

ODBC
The first of these nodes, ODBC, shows a list of ODBC data sources that you have
already configured for use. These are local and remote data sources that are not
accessed through an object model such as ADO or DAO. The Report Designer
Component can use the same database drivers for these data sources that are
available through Crystal Reports.

Note: To use these drivers, you must install the full Crystal Reports product.

You can either use an existing data source or create a new one by selecting the
Create New Data Source option. If you select, Create New Data Source, the RDC
displays a Wizard that leads you through the creation process.

You will need to supply:
� the type of data source you want to create
� the driver you want to use
� any driver-specific information that is required.

If you are setting up a machine-independent File Data Source, you will also be
asked to supply the name of the file data source you want to save the connection to.

Once you’ve supplied this information, the Wizard sets up the data source for you.

To connect to an existing ODBC data source

1 Choose the data source.

2 Choose the table(s) that contain the data you want to use.

3 Link the tables (if required) using the Visual Linking Expert.

Once you have done this, the RDC lists the tables you have selected and the fields
available in each table under the Database Fields node in the Field Explorer on the
left side of the Designer.

Then drag the fields you want onto your report and position them where you want
them.
Crystal Reports Developer’s Guide 41

http://www.seagatesoftware.com/ipl/default.asp?product=SCRDeveloperHelp&version=8&language=EN&destination=library

Active Data Sources
Database Files
This node lists standard PC data sources that reside locally. If your database isn’t
listed, browse for your file using the Find Database File option.

More Data Sources
Use the More Data Sources node to select data sources that can be accessed through
OLE DB and native drivers. This includes:
� Microsoft Active Data sources (ADO, DAO, RDO)
� Exchange folders
� Data stored on the local file system
� Mailbox Administration Files from Exchange
� IIS and Proxy server log files
� NT Event logs
� Direct OLE DB connections
� Outlook folders
� Web IIS Log Files

Active Data Sources
When you choose any of the Active Data data sources (ADO, DAO, RDO, or Data
Definition Files), the RDC displays the Select Data Source dialog box with the
appropriate tools enabled.

ADO
ActiveX Data Objects is the new data connection technology designed to provide
a common interface for working with relational databases, mail messaging, event
logs, and most any other form of data storage. ADO can be used to connect to any
ODBC or OLE DB compliant data source when you design your report in the
Report Designer Component.

The resulting ADO Recordset is not directly available from the Report Designer
Component, but it can be replaced by alternative Recordset objects. For example,
if your Visual Basic application allows users to make choices that can affect the set
of data displayed by a report, simply create a new ADO Recordset at runtime, then
pass it to the Report Designer Component using the SetDataSource method. The
only restriction is that the fields in the new Recordset match the fields originally
used to design the report. For more information on using the SetDataSource
method, see “SetDataSource method” on page 48.
42 Crystal Reports Developer’s Guide

5 RDC Data Access
ADO is the most flexible option for data access. It provides a means of connecting
to all kinds of data, including mail messaging, event logs, and Web server site data.
In addition, it has been designed, ultimately, to replace DAO and RDO.
� If you are creating new applications using Visual Basic, you should strongly

consider ADO for your data connections.
� If you are working with Visual InterDev for developing web sites, you have an

additional advantage of being able to use ADO with Active Server Pages.

DAO
Data Access Objects (DAO) is designed primarily for use with local and ISAM
(Indexed Sequential Access Method) data sources created through applications
such as Microsoft Access, Microsoft FoxPro, and Borland dBASE. Although DAO
can be used to connect to ODBC data sources, RDO and ADO provide more
powerful options for such data. However, DAO is the oldest of the three
technologies, giving it the advantage of being familiar to many Visual Basic
programmers. As a result, DAO is also frequently found in existing applications,
and applications created with older versions of Visual Basic.

If you are adding the Report Designer Component to a Visual Basic application that
already uses DAO, or if you are connecting to a local data source such as an Access
or dBASE file, you should consider using DAO to design your reports. Experienced
Visual Basic programmers who are familiar with the DAO object model may also
want to stick with a known technology. However, if you are working with ODBC or
other remote data sources, RDO and ADO may be a better solution.

Once you design your report in the Report Designer Component, information
about the connection to your DAO data source is stored with the report, and
cannot be accessed directly. However, you can change the data displayed by a
report by changing the data source at runtime using the SetDataSource method. A
DAO Recordset object may be passed to the report through this method. Keep in
mind, though, the Recordset must have fields identical to those in the original data
source used at design time.

RDO
Remote Data Objects (RDO) is designed specifically for working with remote data
sources. This includes ODBC and most common SQL database systems. In fact,
RDO acts as an object-oriented wrapper around the ODBC API. The flexibility of
ODBC is available to Visual Basic programmers through the simplicity of a COM
based object model. Already a common choice for developers of client/server
systems, RDO allows the execution of stored procedures and the processing of
asynchronous operations, meaning your users can continue to work while your
application processes a data query in the background.
Crystal Reports Developer’s Guide 43

Active Data Sources
The basic object used to manipulate data in RDO is a Resultset (specifically, the
rdoResultset object). A new Resultset can be defined in your Visual Basic application
and passed to the Report Designer Component at runtime using the SetDataSource
method. The RDO data source used to initially create your report at design time,
however, is not available for direct manipulation. Instead, information about the
connection to the data source is stored inside the instance of the Report Designer
Component that you add to your application. By creating a new Resultset at runtime,
though, and passing the Resultset to the Report Designer Component, you can
control the data in a report based on user requests and responses.

RDO provides a powerful connection to remote data sources through ODBC. If
you are designing a client/ server application, or any application that needs to
connect to a large database system such as Microsoft SQL Server, Oracle, or Sybase
Adaptive Server, RDO can provide a strong solution. However, RDO limits your
application to standard relational database systems. Other sources of data, such as
e-mail and messaging servers, system logs, and Internet/intranet server logs are
unavailable to RDO. Developers designing web-based applications using Visual
InterDev would also be served better by ActiveX Data Objects (ADO).

Crystal Data Object (CDO)
If you develop applications that produce data that does not exist outside of the
running application (applications monitoring system or network resources, for
example), you can take advantage of the most powerful reporting features in the
industry via the Crystal Data Object (CDO). Using CDO, the Active Data Driver,
and the Report Design Component, you can create reports that are instant and up
to date, without first having to dump the data to a separate database.

The Crystal Data Object is an ActiveX DLL that can be accessed from any Windows
development environment that supports ActiveX. By creating a Rowset object,
similar to a Recordset, and filling it with fields and data, you design a virtual
database table that passes as an ActiveX data source to the Crystal Active Data
Driver. Once the CDO Rowset has been created, it can be used just like any other
active data source such as DAO or ADO.

CDO, like DAO and ADO, is based on the Component Object Model (COM). Any
development environment that supports COM interfaces can dynamically generate
a set of data for a report without relying on a database that exists at design time.

Note: The Crystal Data Object does not support Memo or BLOB fields.

Crystal Data Source Type Library

The Crystal Data Source Type Library, like Crystal Data Objects, provides a
means for designing customized data sources that can be reported off of using the
Active Data Driver. Crystal Data Source, however, unlike CDO, is a type library
with an interface that can be implemented in a standard Visual Basic class. Once
44 Crystal Reports Developer’s Guide

5 RDC Data Access
implemented, the Crystal Data Source interface allows you to manipulate data fully,
much like you would manipulate a standard Recordset object in ADO or DAO.

Note: The Crystal Data Source type library is designed for Visual Basic 5.0 or later.

Keep in mind, though, once you add the Crystal Data Source interface to your
class, you must implement all methods and properties exposed by the interface.

CDO vs. the Crystal Data Source Type Library

While CDO and the Crystal Data Source Type Library have some similarities, they
have been designed as solutions to different data access problems:
� If you need to implement a complete data source in your application that

allows runtime movement through records and fields, or if you intend to
implement your data source as a separate ActiveX component, consider using
the Crystal Data Source Type Library.

� If you need to create a quick and simple means of storing a large amount of data
in a convenient package for reporting on, and the data will remain inside the
same application as the reporting functionality, then use Crystal Data Objects.

Data Definition Files
A data definition file is a text file that contains information about the kind of data
to place in a report instead of information about an actual data source.
� At design time, you can build reports by pointing the Active Data Driver at a

data definition file.
� At runtime, point the Active Data Driver to an actual data source and the RDC

builds your report from that new data.

While data definition files provide great flexibility in your reporting, and they are
still supported in Crystal Reports, they have been superseded with a more elegant
technology, Unbound Fields.

Data Environments
Data Environments (introduced with VB 6) allow for interactive creation of
hierarchical ADO Objects at design time, and easy access to data at run time.
Through the Data Environment Designer you create Data Environment objects to
connect with Data sources (Connection Objects), and access data from those
sources (via Command Objects) at design time and run time.

You can use a data environment as a data source for reports you create with the
Report Designer Component. If your project includes a data environment, the
Report Designer Component will allow you to select the data environment as a
data source at design time. Runtime reports make full use of the data exposed by
a data environment by working with the standard connection, command, or
recordset objects provided, much like working directly with an ADO object.
Crystal Reports Developer’s Guide 45

Data Environments
Microsoft Data Link (UDL) files
The Report Designer Component now supports Microsoft Data Link (UDL) files.

Microsoft Data Link Files are comparable to File DSNs in ODBC. UDL files stores
connection information to be used by the OLE DB layer. UDL's are available with
OLE DB 2.0, which is installed by MDAC 2.x.

To create a UDL file

1 Right-click on the Windows desktop, choose "New" from the popup menu and
then choose "Microsoft Data Link". A new UDL file will appear on the desktop. By
default, it will be called "New Microsoft Data Link.UDL". You can rename this file.

2 Double-click, or right-click, and choose Properties on this icon to configure the
connection. Select the appropriate OLE DB provider in the Provider tab before
entering information in the Connection tab. The template for the Connection
tab changes based on the OLE DB provider used.

For more information on how to use UDLs, see the Microsoft Data Link help file,
"msdasc.hlp".

Report templates using unbound fields
The RDC now enables you to create report templates based on unbound field
objects. Then, using minimal code, you can bind those field objects to a data source
(or one of several data sources) at runtime. The Report Engine uses the data type
and the Name property of the unbound field object to match it with a data field in
the recordset.

This technology replaces the need for data definition files. Data definition files are
still supported in the Report Designer Component however. For additional
information on using Unbound Fields, see ”Using fields that bind to data sources
only at runtime” in the Crystal Reports Developers Guide (CrystalDevHelp.chm) or the
“Unbound fields” on page 26 and “Pro Athlete Salaries” on page 27 sample
applications found in the C:\Program Files\Seagate Software\Crystal
Reports\Samples\En\Code\Visual Basic folder.
46 Crystal Reports Developer’s Guide

5 RDC Data Access
Database Drivers
For the Report Designer Component to get data to display on the report, it uses a
database driver. That driver may be a native driver such as Seagate’s native
Microsoft Access driver, or it may be an ODBC or an OLEDB driver. Each of these
drivers is a separate DLL.

These drivers architecturally work the same way: the Report Designer Component
accesses the database for the data it needs.

Crystal Active Data Driver
The one driver that stands out is the Active Data driver (P2smon.dll (32-bit)). The
difference with this driver is that it is not intended to be used to connect to your
database. Instead, this driver works with recordsets.

Most database applications that you might create use recordsets to send data back
and forth between the application and the database. With the Active Data driver,
you would pass a populated recordset object, which is sitting in memory, to the
Crystal Report Engine. The Report Engine then reads the recordset object to
populate the report instead of reading the records in the database itself.

Passing the Recordset

For Crystal Reports to use the recordset in memory, you need to:
� declare the recordset
� run the query
� extract the data.

This recordset can be of type ADO (Data Environment), DAO, RDO, or CDO. The
syntax involved in passing a recordset to a report differs depending on the
component being used. Refer to the Developer help file for more information.

Note: You must pass a recordset to the report. If you do not pass a recordset, the
Report Designer Component will attempt to connect directly to your database.
� If you have an unsecured database such as Microsoft Access, the report will

work, but the driver is not being used the way it is intended to be used.
� If the database is secured like a Microsoft SQL Server database, then an error

message stating "Server not yet opened" will be displayed because a password
was not supplied in order for the report to log on to the database.
Crystal Reports Developer’s Guide 47

Database Drivers
SetDataSource method

The SetDataSource method is designed for reports using the Active Data driver. The
Method is used to provide information about a data source to the database driver
associated with a Database object. For example, if the Crystal Active Data Driver has
been used to design the report, this method can be used to provide an active data
source for the report, such as a DAO, ADO, or RDO Recordset or a CDO Rowset.

When RDC uses the Active Data Driver

There are three times that the RDC automatically uses the Crystal Active Data
Driver:
� When you use the Project button on the Data tab of the Report Expert to select

your data source, the RDC will automatically use the Active Data Driver.
� When you choose one of the Active Data options from the More Data Sources

node in the Data Explorer, the RDC will also use the Active Data Driver.
� When you use the new methods AddADOCommand or AddOLEDBSource,

the RDC will automatically use the Active Data Driver. Both of these methods
require you to supply an active ADO connection.

Determining if the RDC is using the Crystal Active Data Driver

If you are having a problem with your data connection and you want to make
certain that you are using the Crystal Active Data Driver:

1 Right-click the empty space beneath the field tree in the Field Explorer at the
left of the RDC Designer.

2 Select Set Location from the shortcut menu when it appears.

3 When the Set Location dialog box appears, look at the Server Type at the
bottom of the dialog. If the RDC is using the Active Data Driver, the server
type will read Active Data and then give the active data type (For example,
ADO, DAO, etc.).

Note: Alternatively, you can select Convert Database Driver from the shortcut
report. When you make this selection, the driver currently in use will be grayed
out yet visible.
48 Crystal Reports Developer’s Guide

Understanding the RDC Object Model 6

This chapter provides you with an understanding of the
Report Designer Component (RDC) Object Model through
a high-level overview of how a report is created. The
overview is then related to the primary objects and
collections contained in the RDC Object Model. More
detailed information on a number of the objects, collections,
and events is available at the end of the chapter.
Crystal Reports Developer’s Guide 49

Overview
Overview
The Report Designer Component is a dual interface object model based on Component
Object Model (COM) technology, a standard that allows applications and component
objects to communicate with one another. Because the standard doesn’t specify how
components are structured, but defines only how they communicate with one another
other, the RDC can be used in any development environment that supports COM—
such as Visual Basic, Visual C/C++, Visual InterDev, etc.

Note: Visit the Library on the Seagate Software website to get documentation and
knowledge base articles about the Report Designer Component Object Model.

A high level overview
The RDC is similar in operation to the Form designer in VB: it enables you to create
instances of various classes visually.
� You design a form by positioning controls where you want them to appear

and then setting their properties.
� Each of these controls is actually an instance of a class. A command button

is an instance of one class. A text box is an instance of another.
� You design a report in the same way, by positioning objects where you want

them to appear and then setting their properties.
� Each of the objects in your report is an instance of a class. A Section is an

instance of one class. A text object is an instance of another.

A new report, by default contains five section objects: the Report Header (RH)
section, the Page Header (PH) section, the Details section, the Report Footer (RF)
section, and the Page Footer (PF) section. The sections are numbered in consecutive
order from top to bottom. The top section is one; the bottom section is five. All of
these sections together make up the Sections collection. The Sections collection is
indexed with a one-based index.

Each of these sections has a single event: Format. The Format event is fired
whenever a pass is made through the section as the report is being created. By
trapping the format event for a section, you can manipulate the section or any of
the objects you place in the section whenever the section is fired.
� Manipulating the section involves actions such as setting its background color

or its height.
� Manipulating an object involves actions such as changing a font color in a field

object based on a condition being true or changing the report title in response
to user input.

You can do just about anything with the report at runtime, with a minimum of
code, and all within the VB IDE.

At this very basic level:
� You can place objects in your report.
� You can manipulate the objects as needed in response to various events.
50 Crystal Reports Developer’s Guide

http://www.seagatesoftware.com/ipl/default.asp?product=SCRDeveloperHelp&version=8&language=EN&destination=library

6 Understanding the RDC Object Model
The next level
A report can have more than five sections. You can create these sections yourself if
you need additional sections. The RDC will create some for you whenever you
group or summarize data.

Sections are numbered consecutively as they are created.
� The first new section created is section 6.
� The second new section is 7, and so forth.

When sections are created, they are added to the Sections collection and indexed
appropriately.

You can place a variety of Report Objects in the sections of your report.
� If they are Field Objects, they could be one of many kinds of fields including

database fields, formula fields, parameter fields, group name fields, or many
others as well.

� If they are Subreport objects, they can each be viewed as a separate object with
its own set of properties. But each subreport is itself a report, and as a report it
can contain virtually all of the same kinds of different objects that it’s parent
report contains.

� If they are Cross-tab objects, they too can be viewed as separate objects or as
specialized reports that themselves contain a variety of different objects.

With Subreport objects and Cross-tab objects, you can change the properties of the
objects themselves (Subreport Name, Cross-tab Name) and you can change the
properties of the objects they contain as well.

The Primary Objects and Collections
The following objects and collections are discussed in the section:

“The Application object” on page 53

“The Report object” on page 53

“The Areas collection” on page 53

“The Sections collection” on page 53

“The ReportObjects collection” on page 53

“The FieldDefinitions collection” on page 54

“The Subreport Object” on page 54

“The Database Object” on page 54

“The DatabaseFieldDefinitions collection” on page 55

“The DatabaseTables collection” on page 55
Crystal Reports Developer’s Guide 51

The Primary Objects and Collections
52 Crystal Reports Developer’s Guide

6 Understanding the RDC Object Model
The Application object
The top level of the object model is the Application object. Since it is at the top, the
RDC always expects it to be there, so there’s no need to reference it in your code
(generally). There are some specific instances where you must reference it. For
more information, see “The Application Object” on page 55.

The Report object
Below the Application object is the Report object. The Report object contains many
Collections and objects. For more information, see “The Report Object” on page 56.

The Areas collection
The very top Collection in report is the Areas collection. By default it contains five
Area objects. This is a special kind of collection that you may not use too often.
We’ll talk about that when we discuss the next collection, Sections.

The Sections collection
Every report, including a blank report, has Sections. The Sections are the bands in
the report where you place the various report objects. By default, a new report, and
thus the Sections collection for that report, contains five sections. Each of the five
default sections resides in one of the five default areas—five sections:five areas.
When you begin with a blank report, Areas and Sections are essentially the same.
So there’s little need to reference an area unless you have a specific need to do so.

For example, you want to create several of one kind of section. In this example, you
want to create several Details sections. In this case, the five areas:five sections
relationship is broken. To refer to those Details sections as a unit, you can think of
one Details Area now containing several Details sections. When you reference the
area, you are referencing all of the sections in that area.

Thus, unless you have a special need, you can think of Sections as having Report
for a parent. If you have the need, or if you want to be very specific, you can also
think of Sections having Area for a parent. However you think of this part of the
object model is fine. As long as you have five sections and five areas, you can access
Sections through Areas, or you can go directly to Sections. Your code will work
either way. For more information, see “The Sections Collection” on page 59.

The ReportObjects collection
ReportObjects is a collection that can contain many things. With the exception of
Areas and Sections, everything else in a report is a report object including Database
field objects, Parameter field objects, and Text objects. Note that we used a lower
Crystal Reports Developer’s Guide 53

The Database Object
case “r” and “o” for our spelling of “report object”. The reason is there is no
“ReportObject” in the ReportObjects collection. The ReportObjects collection is just
a convenient way to think about these objects and it is useful in your code.

Now many of these objects that are considered to be members of ReportObjects are
also members of more specific collections.
� A SortField object, for example, is a member of the ReportObjects collection. It

is also a member of the SortFields collection.
� A FormulaFieldDefinition object, likewise, is a member of the

FormulaFieldDefinitions collection.

You can access an object through the ReportObjects collection or through its
namesake collection. This provides you with much flexibility in your coding. See
“The ReportObjects Collection” on page 58.

The FieldDefinitions collection
In the ReportObjects collection, many of the members have the word “field” in
their names: GroupNameFieldDefinition, ParameterFieldDefinition. Objects that
contain the word “field” are also a part of the FieldDefinitions collection. As was
the case with ReportObjects, there is no such thing as a generic FieldDefinition in
the FieldDefinitions collection. Instead there are specific kinds of fields including
FormulaFieldDefinition, SpecialVarFieldDefinition, SummaryFieldDefinition, and
others as well.

Following this up the hierarchy, we see that a ParameterFieldDefinition is a
member of:
� its namesake collection, ParameterFieldDefinitions
� the FieldDefinitions collection
� the ReportObjects collection.

The Subreport Object
The Subreport Object is part of the ReportObjects collection. A subreport is a report
within a report; it is a complete report with its own Areas, Sections, and
ReportObjects. Once you access a Subreport object, you manipulate the objects in
the subreport the same way you would with objects in the main report. For more
information, see “The Subreport Object” on page 57.

The Database Object
The Database object represents a data source for the report. But a data source
doesn’t mean all the data available. It means only a subset of data that is useful for
the report. That subset can be defined as collections of tables and, within each of
those tables, collections of fields. When you think about a data source in this way,
54 Crystal Reports Developer’s Guide

6 Understanding the RDC Object Model
the data side of the RDC object model becomes clear. For more information, see
“The Database and Database Tables Objects” on page 56.

The DatabaseTables collection
The Database object contains a DatabaseTables collection. This collection contains
a number of DatabaseTable objects which comprise all the Tables which contain
data used in the report.

The DatabaseFieldDefinitions collection
Each DatabaseTable object contains a DatabaseFieldDefinitions collection which
holds all of the fields from the table that are available for the report. Each of those
fields is called a DatabaseFieldDefinition.

Object Considerations

The Application Object
Not all development environments support ActiveX designers. Visual C++ and
Delphi, for example, are two environments where you can use the functionality of
the RDC automation server but you can’t add the RDC directly to your projects. In
these cases, you must access the Report Designer’s Report object by creating an
instance of the Application object and then calling the OpenReport method as well.

In other situations, you may need to use separate report files in your application
that were created or edited using Crystal Reports. An advantage of using such
standalone report files is that through Crystal Reports, you can save report data
with the report file, eliminating the need of maintaining a connection to a data
source at runtime. In this case you will need to create an instance of the Application
object and then call the OpenReport method as well.

The following code sample demonstrates the process of obtaining an Application
object and opening a report file in Visual Basic:
Dim CRXApplication As CRAXDRT.Application

Dim CRXReport As CRAXDRT.Report

Private Sub Form_Load()

 Set CRXApplication = CreateObject(“CrystalRuntime.Application”)

 Set CRXReport = CRXApplication.OpenReport(“C:\Reports\Sales.rpt”)

End Sub

When this code finishes, rpt is a valid Report object and can be used just like any
Report object you would obtain through the Report Designer Component.

Note: The sample call to CreateObject above uses a version independent Prog Id
for the Report Designer Component. The correct Prog Id for this version of the
Crystal Reports Developer’s Guide 55

Object Considerations
Report Designer Component is CrystalRuntime.Application.8, but the version
independent Prog Id should use the most recent version of the component
installed on your system.

The Report Object
Many existing ActiveX object models require declaring and creating a high level
object, such as an Application object, before you can work directly with the data.
The RDC, however, allows direct access to the Report object, giving you control
over your reports with a small amount of Visual Basic code.

Assuming you have added the RDC to a Visual Basic application, and the (Name)
property of that component is set to CrystalReport1, you can use code similar to
the following to obtain a Report object representing that component:

Example:

Dim cr As CRAXDRT.Report

Set cr = New CrystalReport1

� The first line declares cr as Report object from the CRAXDRT object library, the
Report Designer Component’s object library.

� The second line of code defines cr as a new instance of the report in the
CrystalReport1 component in your application.

The Field Object
All relational databases have two standard features: records and fields. Records
contain the actual data, while fields define what type of data the records contain.
� You can control the records through Recordset and Resultset objects exposed

by ADO, RDO, and DAO.
� You can manipulate the fields in the data source through these objects as well.

To manipulate the fields that appear in your report, however, you must either:
� know the name of each database field you want to manipulate and reference

each field directly, or
� cycle through the fields in the ReportObjects collection to identify those fields

that you want to manipulate.

For examples of how to use either of these methods, see “Referencing objects in a
report” on page 66.

The Database and Database Tables Objects
All reports must connect to a data source to obtain data. The most commonly used
data source is a relational database. The Report Designer Object Model, therefore,
has provided objects, properties, and methods specific to working with databases.
56 Crystal Reports Developer’s Guide

6 Understanding the RDC Object Model
The Database object is available directly from the Report object and represents the
data source used by the report. This data source can be changed using the Database
object’s SetDataSource method. In addition, the Database object provides the
Tables property, a read-only property that gets the DatabaseTables collection of
DatabaseTable objects. You have access to log on information (for password
protected systems), database driver names, and database locations through a
DatabaseTable object. Use code similar to the following in order to work with the
Database and DatabaseTable objects:
Dim Report As New CrystalReport1

Dim tableName As String

Dim dbTable As CRAXDRT.DatabaseTable

Report.Database.Verify() ‘ Verifies a valid connection to the database

For Each dbTable In Report.Database.Tables

 tableName = dbTable.Name

Next

The Subreport Object
A SubreportObject object is another report inside the original report. Once you
have obtained a SubreportObject, you can work with any aspect of it just as if it
were a standard Report object.

You can obtain a SubreportObject through the ReportObjects collection. The
following example shows you how to iterate through the sections of a report and
change the background color of each subreport to magenta.
Dim Report As New CrystalReport1

Dim subReport As SubreportObject

Dim sect As Section

Dim rptObject As Object

For Each sect In Report.Sections

For Each rptObject In sect.ReportObjects

If rptObject.Kind = crSubreportObject Then

Set subReport = rptObject

subReport.BackColor = RGB(255, 0, 255)

Set subReport = Nothing

End If

Next

Next

Note: Currently, the Crystal Report Designer Component does not support
subreports inside of subreports. The report iterations cannot go more than one
subreport deep. However, you can have multiple subreports inside the main
report.
Crystal Reports Developer’s Guide 57

Collection Considerations
The CrossTabObject
A CrossTabObject object in the Report Designer represents a single cross-tab in
your report. Cross-tabs are specialized subreports. Even if you design your
primary report as a cross-tab, it is added to the report page as a separate object
inside the report.

You can obtain CrossTabObject objects from a report much like you obtain
subreports. Since a CrossTabObject is a report object like a field or a subreport, you
can access it through the ReportObjects collection.

CrossTabObjects can be manipulated in the same way as other report objects.
However, due to the complexity of this object, few properties and methods are
exposed.

The following code searches for cross-tabs in a report and applies formatting
features to make them stand out from the rest of the report.
Dim Report As New CrystalReport1

Dim xtObject As CrossTabObject

Dim sect As Section

Dim rptObject As Object

For Each sect In Report.Sections

For Each rptObject In sect.ReportObjects

If rptObject.Kind = crCrossTabObject Then

Set xtObject = rptObject

xtObject.BorderColor = RGB(255, 0, 0)

xtObject.HasDropShadow = True

Set xtObject = Nothing

End If

Next

Next

Collection Considerations

The ReportObjects Collection
The ReportObjects collection of a report Section object contains all report objects in
that section. Report objects may be Text objects, Fields, Subreport objects, or Cross-
tabs. To be able to work with a particular report object, you must first obtain the
object, and then determine what type of object it is.

Note: If you want to work with all report objects in a section, consult IReportObject
in the Object Browser for a list of properties that are common to all report objects.

Usually, report objects can be addressed directly in your code based on their Name
property.

However, if you intend to work with several objects in a section, you need to refer
to them through a Section object in the report. The following code locates the last
58 Crystal Reports Developer’s Guide

6 Understanding the RDC Object Model
object in the last section of the report and assigns a value to a String variable based
on the type of object it is.
Dim Report As New CrystalReport1

Dim sect As Section

Dim rptObject As Object

Dim objKind As String

Dim lastSectWithObject As Integer

lastSectWithObject = Report.Sections.Count

Set sect = Report.Sections.Item(lastSectWithObject)

Do While sect.ReportObjects.Count <= 0

lastSectWithObject = lastSectWithObject - 1

Set sect = Report.Sections.Item(lastSectWithObject)

Loop

Set rptObject = sect.ReportObjects.Item(sect.ReportObjects.Count)

Select Case rptObject.Kind

Case crBlobFieldObject

objKind = “BLOB field object”

Case crBoxObject

objKind = “Box object”

Case crCrossTabObject

objKind = “CrossTab object”

Case crFieldObject

objKind = “Field object”

Case crGraphObject

objKind = “Graph object”

Case crLineObject

objKind = “Line object”

Case crOleObject

objKind = “OLE object”

Case crSubreportObject

objKind = “Subreport object”

Case crTextObject

objKind = “Text object”

Case Else

objKind = “Unknown object”

End Select

Note: Instead of using the Item property as shown, you can reference a report object
directly using its index, for example, ReportOptions(1). You can also reference it
directly using its name property by including the report object name in quotes, for
example, sect.ReportObjects("Field5") instead of sect.ReportObjects(1).

The Sections Collection
All report objects, such as Fields and Text objects, are contained within Sections.
Often, you can obtain these directly by referring to the name property of an object
in your code.

Note: There may be times, however, when you need to obtain an object through
the report section it is in. At other times, you may have a need to make changes to
the section itself.
Crystal Reports Developer’s Guide 59

Event Considerations
Every report contains a collection of its sections, stored in the Sections property of
the report object. You can access individual sections through this collection. For
example, the code below sets the height of the first section of the report (the Report
Header) to half an inch (720 twips) and suppresses the second section of the report
(the Page Header) so that it will not appear.
Dim Report As New CrystalReport1

Report.Sections.Item(1).Height = 720

Report.Sections.Item(2).Suppress = True

For information on how to obtain and work with other objects within a Section object,
such as fields and text objects, refer to “The ReportObjects collection” on page 53.

Each section in a report is itself a collection. The collection contains all of the report
objects in that section. When designing your application, be aware that when a
section is being formatted, all objects in that section are also being formatted. Also,
all other sections and objects outside of the current section are not being formatted.
This information can affect how data is displayed in various sections of the report,
depending on your code.

Event Considerations
The RDC directly supports four events:
� AfterFormatPage
� BeforeFormatPage
� FieldMapping
� NoData.

The RDC supports the Format event for the Section object as well. These new
events are discussed in detail in the Developer’s online help.

The Format event for the Section object
The Crystal Report Designer Component provides a Format event for every
section of your report. This allows you to control report formatting and output
dynamically at runtime. For example, you can apply conditional formatting
during the Format event, based on conditions that exist only at runtime.

The Format event is a standard Visual Basic event that you can program by
displaying the Code View of the Report Designer Component. Assuming the
Report Designer has been named CrystalReport1 in your Visual Basic project:

1 In the Visual Basic Project window, select the CrystalReport1 designer from
the Designers folder.

2 Click the View Code button in the toolbar at the top of the Project window. A
Code window will appear for the CrystalReport1 designer component.
60 Crystal Reports Developer’s Guide

6 Understanding the RDC Object Model
3 In the object drop-down list box at the top left of the Code window, select a
Section object that you want to apply code to. Notice that Section objects are
numbered in the order that they appear on your report, from the top of the
Report Design window to the bottom. For instance, if you select the Section1
object, your code will apply to the Report Header section of your report. These
Section objects are labeled for you at the top of each section in the Report
Designer window.

Notice that when you select a Section object, the Format event is automatically
selected for you in the event drop-down list box at the top right of the Code
window. Format is the only event available to the Section object.

When writing code for the Format event, keep in mind that not all properties and
methods for all objects are available during the Format event. Many properties are
available on a read-only basis. If you are not sure about a property or method, refer
to the specific property or method name in the Object Browser or the Report
Designer Object Model reference section of the Developer help file.

The Format event receives a single argument from the Report Designer
Component. The pFormattingInfo argument is an object of type FormattingInfo.
The FormattingInfo object has only three properties:
� IsEndOfGroup - This property is true if the section being formatted is a Group

Footer.
� IsRepeatedGroupHeader - This property is true if the section being formatted

is a repeated Group Header. Repeated Group Headers appear when a group
extends to two or more pages, and the group has been formatted to repeat
information that appears in the Group Header on the second, third, etc. pages.
This property is only true if the Group Header is the second, third, etc.
instance of the Group Header. It is false for the original first instance of the
Group Header.

� IsStartOfGroup - This property is true if the section being formatted is a Group
Header.

Note: When designing your application, be aware that when a section is being
formatted, all objects in that section are also being formatted. Also, all other
sections and objects outside of the current section are not being formatted. This
information can affect how data is displayed in various sections of the report,
depending on your code.

Note: If you are using the Format event to calculate values and you need to carry
that value across sections (as in a running total, for example), you will need to use
a Report Variable to store your ongoing total. Report Variables are new to Crystal
Reports. For further information on Report Variables, please see ”Report
Variables” in the Crystal Report Developers Help (CrystalDevHelp.chm).
Crystal Reports Developer’s Guide 61

Event Considerations
The Visual Basic Initialize and Terminate events
In addition to the report-specific events, the Report object can also produce the
standard Visual Basic Initialize and Terminate events.

The Initialize event is fired when you first reference the Report object at runtime. For
example, your application may contain a global variable that represents the Report
object of the Report Designer that you added to your application at design time:
Dim Report As New CrystalReport1

In this case, declaring and setting the Report variable fires the Initialize event. The
Terminate event will be fired when this variable is set to Nothing:
Set Report = Nothing

The Initialize event and the Terminate event are fired only once for each Report
instance. With that in mind, you can make many changes to your report within the
event procedure code for each of these events:

Private Sub Report_Initialize()

 ‘ Add report initialization code here

End Sub

Private Sub Report_Terminate()

 ‘ Add report clean up code here

End Sub

� Use the Initialize event to make broad changes that affect the entire report. For
instance, you could assign a new data source using the SetDataSource method.

� Use the Terminate event to clean-up of any variables or objects that you created
during the Initialize event. If, for instance, you created a new ADO Recordset
object in the Initialize event, you can use the Terminate event to set this
Recordset object equal to Nothing, freeing up system memory and resources.
62 Crystal Reports Developer’s Guide

RDC Programming 7

This chapter provides solutions to a number of common
runtime challenges. Most of these challenges involve
accessing an object and then changing the properties. The
chapter first discusses special considerations when
programming with the Report Designer Component (RDC);
it then presents the two general methods to access an object
in a report or subreport. The examples assume that you have
used one of these methods to locate the object of interest in
order to concentrate on the special considerations that you
may have with each of the various procedures.
Crystal Reports Developer’s Guide 63

Special Considerations
Special Considerations

Object naming considerations
If your project includes other libraries that contain objects with names identical to
those found in the Crystal Report Engine Object Library, you will encounter
conflicts unless you reference the objects using a prefix that identifies their source.
For example, if you have included the DAO Library with the RDC runtime object
library in your project, you will find that both libraries include a Database Object.
In order to avoid conflicts, you must prefix the objects as follows:
CRAXDRT.Database

for the object from the RDC runtime Object Library, or
DAO.Database

for the object from the DAO Library.

Scope considerations
When you specify a data source using code, it is important you place the code in
the appropriate location in your project.Otherwise, you will face “no data” or
runtime error situations because the report may be searching for data that has gone
out of scope.

By default, the program does not read data into the report until you actually run
the report (print it, preview it, etc.). Anything that terminates the connection to the
data source before this time will cause out of scope problems.

Typical out-of-scope problems include:
� Declaring a local object variable for the recordset or resultset in the Form_Load

event procedure. While this may seem appropriate, the variable, and thus the
data it references, will go out of scope as soon as the form stops loading.

� Similarly, declaring a local object variable in the Report_Initialize event
procedure will go out of scope because the recordset is discarded at the end of
the procedure. That procedure ends before any records are read from the
recordset.

Both problems can be corrected by declaring the variable for the recordset at the
module level.
� A third problem can occur when you declare a global variable for the report

and try to populate it with a recordset that only has procedural scope. The
following code provides a good example of this:

Dim CRXReport As New CrystalReport1

Private Sub Form1_Load()

 Call SetData

 CRViewer1.ReportSource = CRXReport
64 Crystal Reports Developer’s Guide

7 RDC Programming
 CRViewer1.ViewReport

End Sub

Private Sub SetData()

 Dim rs As New ADOR.Recordset

 rs.Open “Select * From Customer”, “Xtreme Sample Database”

 CRXReport.Database.SetDataSource rs, 3, 1

End Sub

In this example, although the CRXReport object is global (for the Form), the rs object
exists only for the life of the SetData procedure. Even though it is assigned to the
Report object before SetData finishes, the object, and the data that rs represents goes
out of scope and is invalid for the Load event. Thus, the code will fail.

This problem can be solved using the ReadRecords method. ReadRecords forces the
report to read the records into the report so that they are internal to the Report object
itself rather than remaining as a separate Recordset object referenced by the report.
Private Sub SetData()

 Dim rs As New ADOR.Recordset

 rs.Open “Select * From Customer”, “Xtreme Sample Database”

 CRXReport.Database.SetDataSource rs, 3, 1

 CRXReport.ReadRecords

End Sub

In this case, the records are read into the report prior to the end of the procedure.
Thus, when the procedure ends, the recordset object may be discarded but the
records are still available for use.

Index considerations
The various collections in the RDC object model are all one-based, that is, the first
member of a collection has index number 1, the second member has index number
2, and so forth. Collection members are indexed consecutively in the order that
they are created.

Dual Interface considerations
The Report Design Component provides dual interfaces. As a result, development
environments such as Visual Basic and Visual C++ can bind with vTable interfaces
at compile time, and less robust environments, VBA, ASP, for example, can use the
IDispatch interface for runtime-only binding.

It is important that you use the more efficient vTable interface if it is supported by
your development environment.
� When you use vTable binding, you have “early binding” which means the VB

compiler can identify syntax errors at compile time when they’re easier to
identify and fix than when they appear only at runtime.

� It enables the VB IDE to speed your coding process by providing hints as you
code through its “Auto List Members” and “Auto Quick Info” capabilities.
Crystal Reports Developer’s Guide 65

Two methods to access an object in a report or subreport
When you work with Visual Basic, always use the more efficient vTable interface
as long as you Dim your object variables using specific class names instead of using
the more generic “Object” type.

Two methods to access an object in a report
or subreport

Referencing objects in a report
Before you work with a report object, you have to reference it (open it). You can
reference a report object either explicitly or implicitly:
� Referencing the object Explicitly is the easiest and quickest method for

referencing a report object. When you use this method, your code can
reference the report and its objects directly.

� Referencing a report object Implicitly is a more generic approach. This
approach allows your code to reference the report and its objects indirectly.

� You can access objects in a report either explicitly or implicitly.

Explicit reference – an object in the report

Assume that in your report you have a field with the Name property “OrderID”.
Since you know the field name, you can use code similar to this to reference the
OrderID field directly.
Dim CRXReport As New CrystalReport1

Dim CRXReportField As FieldObject

Set CRXReportField = CRXReport.OrderID

Note: Now that you have the OrderID field, you can put your code here to work
with the properties of that field.

Implicit reference – cycling through the sections

If you are planning to work with a number of different kinds of report objects, you
can cycle through the sections, test each of the report objects for kind, and
manipulate them as you wish. You can do that using code similar to this:

Dim CRXReport As New CrystalReport1

Dim CRXTables As CRAXDRT.DatabaseTables

Dim CRXTable As CRAXDRT.DatabaseTable

Dim CRXSections As CRAXDRT.Sections

Dim CRXSection As CRAXDRT.Section

Dim CRXSubreportObj As CRAXDRT.SubreportObject

Dim CRXReportObjects As CRAXDRT.ReportObjects

Dim CRXReportObject As Object
66 Crystal Reports Developer’s Guide

7 RDC Programming
Note: You put this code in the Form_Load event of the startup form which
contains the Report Viewer.

Start by getting the sections from the Main report.
Set CRXSections = CRXReport.Sections

You begin cycling through each section in the main report.
For Each CRXSection In CRXSections

In each section, you get all the objects in the section.
Set CRXReportObjects = CRXSection.ReportObjects

You cycle through the objects.
For Each CRXReportObject In CRXReportObjects

You test the objects to see if they’re subreports.
If CRXReportObject.Kind = crSubreportObject Then

When you find a subreport, you get a hold of it.
Set CRXSubreportObj = CRXReportObject

Before you work with an object in a report, you have to reference it (open it).

Implicit reference – through a collection

If you are planning to work with a specific kind of report object, you can access the
object by referencing the collection that contains that object. You reference a
collection in a report through the appropriate Report property. Those properties,
and the collections they get, are as follow:

Property Gets

Areas Areas collection (Areas)

Database.DatabaseT
ables

Database Tables collection

FormulaFields Formula Fields collection (FormulaFieldDefinitions)

GroupNameFields Group Name Fields collection
(GroupNameFieldDefinitions)

RunningTotalFields Running Total Fields collection
(RunningTotalFieldDefinitions)

GroupSortFields Group Sort Fields collection (SortFields)

ParameterFields Parameter Fields collection
(ParameterFieldDefinitions)

RecordSortFields Record Sort Fields collection (SortFields)

Sections Section collection (Sections)

SQLExpressionFields SQL Expression Fields collection
(SQLExpressionFieldDefinitions)

SummaryFields Summary Fields collection (SummaryFieldDefinitions)
Crystal Reports Developer’s Guide 67

Two methods to access an object in a report or subreport
Once you have the collection, you can cycle through the collection to locate the
appropriate object you want. The following example shows you how to access the
FormulaFieldDefinitions collection:

You can put this code in the General Declarations.
Dim CRXReport As New CrystalReport1

Dim CRXFormulaField As CRAXDRT.FormulaFieldDefinition

You can put this code in the Form_Load event procedure.
Private Sub Form_Load()

This code gets the collection.
Set CRXFormulaFields = CRXReport.FormulaFields

‘You can put your code here to cycle through the collection to get the

specific object you want

Finally you can view the report.
Crviewer1.ReportSource = CRXReport

Crviewer1.ViewReport

End Sub

Referencing objects in a subreport
Before you work with a subreport, you have to reference it (open it). Similar to
referencing objects in a report, you can do this either explicitly or implicitly.

Explicit reference – the subreport itself

Assume that in your report you have a subreport with the Name property
“Orders”. Since you know the subreport name, you can use code similar to this to
reference that subreport directly:
Dim CRXReport As New CrystalReport1

Dim CRXSubReport As SubreportObject

Set CRXSubReport = CRXReport.Orders

Note: Now that you have the subreport, you can add code to manipulate the
subreport.

Explicit reference – an object in the subreport

Assume that in your report you have a subreport with the Name property
“Orders” and that, in that subreport, you have a field with the Name property
“OrderID”. Since you know the subreport and field names, you can use code
similar to this to reference the OrderID field directly:
Dim CRXReport As New CrystalReport1

Dim CRXSubReport As SubreportObject

Set CRXSubReport = CRXReport.Subreport1

Dim CRXSubReportField As FieldObject

Set CRXSubReportField = CRXReport.Orders_OrderID
68 Crystal Reports Developer’s Guide

7 RDC Programming
Now that you have the OrderID field, you can add code to work with the
properties of that field.

Please note the special way you reference a field in a subreport by name. You must
use:
� the name of the subreport
� an underscore
� the name of the field.

The result, in this example, Orders_OrderID, appears to be a field in myReport
with the name Orders_OrderID. It is actually a field in the Orders subreport; the
program uses dynamic type info to generate these names at runtime. You can find
the names by looking at the Project in the Object Browser.

Implicit reference

Though this approach is more complex, it is not bound to a particular report, and
the code can be reused with minor modifications for other reports that contain
subreports. You can use code similar to the following to access any and all
subreport(s) in a particular report.

You can declare the Variables in the General Declarations section of a form.
Dim CRXReport As New CrystalReport1

Dim CRXTables As CRAXDRT.DatabaseTables

Dim CRXTable As CRAXDRT.DatabaseTable

Dim CRXSections As CRAXDRT.Sections

Dim CRXSection As CRAXDRT.Section

Dim CRXSubreportObj As CRAXDRT.SubreportObject

Dim CRXReportObjects As CRAXDRT.ReportObjects

Dim CRXSubreport As CRAXDRT.Report

Dim CRXReportObject As Object

You put this code in the Form_Load event of the startup form which contains the
Report Viewer.

You start by getting the sections from the Main report.
Set CRXSections = CRXReport.Sections

You begin by cycling through each section in the main report.
For Each CRXSection In CRXSections

In each section, you get all the objects in the section.
Set CRXReportObjects = CRXSection.ReportObjects

You cycle through the objects.
For Each CRXReportObject In CRXReportObjects

You test the objects to see if they’re subreports.
If CRXReportObject.Kind = crSubreportObject Then
Crystal Reports Developer’s Guide 69

Runtime examples
When you find a subreport, you get a hold of it.
Set CRXSubreportObj = CRXReportObject

Finally, you open the subreport and treat it as you would any other report.
Set CRXSubreport = CRXSubreportObj.OpenSubreport

Note: This is where you put the code for manipulating the subreport.
End If

Next CRXReportObject

Next CRXSection

Runtime examples
The following topics are discussed in this section:
� “Working with Cross-Tabs” on page 70.
� “Working with Data sources” on page 71.
� “Working with Formatting” on page 76.
� “Working with Formulas/Selection Formulas” on page 78.
� “Working with Grouping” on page 80.
� “Working with parameter fields” on page 82.
� “Working with OLE objects” on page 84.
� “Working with Sorting” on page 85.
� “Working with Summary Fields” on page 86.
� “Working with Text Objects” on page 87.

Working with Cross-Tabs

Modifying a cross-tab at runtime
A CrossTabObject object in the Report Designer represents a single cross-tab in
your report. Cross-tabs are specialized subreports. Even if you design your
primary report as a cross-tab, it is added to the report page as a separate object
inside the report.

CrossTabObject objects can be obtained from a report much like subreports. A
CrossTabObject is implemented as a single report object accessible through the
ReportObjects collection.

The following code searches for cross-tabs in a report and applies formatting
features to make them stand out from the rest of the report.
70 Crystal Reports Developer’s Guide

7 RDC Programming
Dim CRXReport As New CrystalReport1

Dim CRXXtObject As CRAXDRT.CrossTabObject

Dim CRXSection As Section

Dim CRXReportObject As Object

For Each CRXSection In Report.Sections

For Each CRXReportObject In sect.ReportObjects

If CRXReportObject.Kind = crCrosstabObject Then

Set CRXXtObject = CRXReportObject

CRXXtObject.BorderColor = RGB(255, 0, 0)

CRXXtObject.HasDropShadow = True

Set CRXXtObject = Nothing

End If

Next

Next

Although cross-tabs are much like subreports, because of their specialized
handling of data, there are fewer properties available to the CrossTabObject object
than to the SubreportObject object. Before trying to use a property with a cross-tab
in your report, verify that the property is available to the CrossTabObject object.

Working with Data sources

Changing an ADO data source location – new methods
In Crystal Reports 8, there are two new methods to add ADO data sources to a
report:
� AddADOCommand takes as parameters an active ADO connection and an

ADO command object. In this example, a new connection is created to a
database, and the resulting recordset is assigned at runtime to the report.

� AddOLEDBSource takes as parameters the name of an active ADO connection
and the name of a table that can be accessed through that connection.

In this example, a connection set up through the VB Data Environment is used as
a data source. Both methods can be used with either the VB Data Environment or
another data source created at runtime.
Option Explicit

Dim CRXReport As New CrystalReport1

The ADO connection to the local database.
Dim cnn1 As ADODB.Connection

Dim datcmd1 As ADODB.Command

Demonstrate the use of AddADOCommand by opening an ADO data command
and adding the data source to the report.
Private Sub cmdADO_Click()

 Dim strCnn As String
Crystal Reports Developer’s Guide 71

Working with Data sources
Open the data connection.
 Set cnn1 = New ADODB.Connection

 strCnn = "Provider=MSDASQL;Persist Security Info=False;Data

Source=Xtreme Sample Database;Mode=Read"

 cnn1.Open strCnn

Create a new instance of an ADO command object.
 Set datcmd1 = New ADODB.Command

 Set datcmd1.ActiveConnection = cnn1

 datcmd1.CommandText = "Customer"

 datcmd1.CommandType = adCmdTable

Add the datasource to the report.
CRXReport.Database.AddADOCommand cnn1, datcmd1

End Sub

Adding a data source and a field using AddOLEDBSource
This section demonstrates the use of AddOLEDBSource. One line of code:
� opens an ADO data source
� adds the data source to the report, and then
� adds a field to the report that uses that data source.

In this example, we are using an OLEDB source created in a VB Data Environment.
CRXReport.Database.AddOLEDBSource DataEnvironment1.Connection1,"Customer"

Setting the data source for a subreport
This section describes how to change the database location for different types of
data sources
� Native
� ODBC
� Active Data.

You change the database location (change the data source) for a subreport in much
the same way as you set the database location for the main report. Before you can
change the database location for a subreport, you first need to open the subreport.
For more information, see “Referencing objects in a subreport” on page 68.

Once you have opened the subreport you can change the database location. The
following examples show you how to do that for a variety of different types of data
sources.
72 Crystal Reports Developer’s Guide

7 RDC Programming
Native connection to PC database

If the datasource of the subreport is a PC-type database (for example, MS Access),
and the report is connecting natively (P2BDAO.DLL), then you can use code
similar to the following:

1 Get the Tables collection for the subreport.
Set CRXTables = CRXSubreport.Database.Tables

2 Get the first table from the Tables collection.
Set CRXTable = CRXTables.Item(1)

3 Finally, set the location of the .mdb file.
CRXTable.Location = "C:\My_Application\My_DB.mdb"

Native connection to SQL database

If the datasource of the subreport is of an SQL-type (for example, MS SQL Server),
and the report is connecting natively (P2SSQL.DLL), then you can use code similar
to the following:

1 Get the Tables collection for the subreport.
Set CRXTables = CRXSubreport.Database.Tables

2 Get the first table from the Tables collection.
Set CRXTable = CRXTables.Item(1)

3 Finally, set the location of the .mdb file.
CRXTable.SetLogOnInfo <servername>, <databasename>, <userid>, <password>

ODBC connection to a PC or SQL database

If the datasource of the subreport is a PC-type (for example, MS Access) or SQL-
type (for example, MS SQL Server), and the report is connecting via ODBC
(P2SODBC.DLL), you can use code similar to the following:

1 Get the Tables collection for the subreport.
Set CRXTables = CRXSubreport.Database.Tables

2 Get the first table from the Tables collection.
Set CRXTable = CRXTables.Item(1)

3 Finally, set the location of the .mdb file.
CRXTable.SetLogOnInfo <ODBC_DSN>, <databasename>, <userid>, <password>
Crystal Reports Developer’s Guide 73

Working with Data sources
Active data connection to a PC or SQL database

If the datasource of the subreport is an active data source (ex. DAO, RDO, ADO,
CDO, etc.), and the report is connecting using the active data driver
(P2SMON.DLL), then you can use code similar to the following:

1 Get the Tables collection for the subreport.
Set CRXTables = CRXSubreport.Database.Tables

2 Get the first table from the Tables collection.
Set CRXTable = CRXTables.Item(1)

3 Finally, set the location of the.mdb file.
CRXTable.SetDataSource rs, 3

There are many ways that you can access a subreport, and change the database
location for a subreport. The above examples are simplified and generic so that
they can be used and altered to accommodate an application with any report.

Connecting to OLEDB providers
Each OLEDB provider requires a specific connection string. The following sample
connection strings are for use in the "Connection" input box of the "ADO and OLE
DB" option on the "Select Data Source" dialog box for the Active Data report expert:

Microsoft Jet 3.51 OLE DB Provider

Provider=Microsoft.Jet.OLEDB.3.51;Data Source=c:\Access\Northwind.mdb

Note: At this time, it is not possible to use secured Access databases in the Crystal
Report expert.

� This OLE DB provider appears to only work with 32-bit Access
databases.

� Notice that the database table and query names do not appear in the
drop-down boxes. This has been tracked. The option is to use the SQL
textbox instead.

Microsoft OLEDB Provider for SQL Server

Syntax:
Provider=SQLOLEDB;SERVER=SName;DATABASE=DBName; UID=MyID; PWD=MyPWD

Example:
Provider=SQLOLEDB;Server=TechTest;Database=Pubs;UID=Admin;PWD=sa
74 Crystal Reports Developer’s Guide

7 RDC Programming
Microsoft OLEDB Provider for ODBC Drivers

Syntax:

Provider=MSDASQL;DSN=MyDSN;UID=MyUID;PWD=MyPassword

Examples:

For secured Data Sources:
Provider=MSDASQL;DSN=Xtreme Sample Database;UID=Admin;PWD=Password

For non-secured data sources type the DSN:
Xtreme Sample Database

Note: If it is OLE DB that is being used as the provider for ODBC, select the first
option of the "Select Data Source" dialog box ("ODBC(ADO)") which uses that
specific provider by default.

Microsoft OLEDB Provider for Oracle

Syntax:
Provider=MSDAORA;Password=;User ID=;Data Source=

Example:
Provider=MSDAORA;Password=MyPassword;User ID=Admin;Data

Source=MyOracleServer

Note: It will probably be necessary to re-type the UserID and Password in the
corresponding text boxes of the Select Recordset dialog box.

Connecting to a secure Access session
If your reports connect to secure Microsoft Access sessions, you must provide
session information at runtime using the SetSessionInfo method of the
DatabaseTable object. This method accepts a user ID and password that are passed
to the Access session to provide a connection to the database.

Session information must be added to your code using the SetSessionInfo method,
even if you specified session information at design time. Session information
specified at design time is not stored with the Report Designer Component.

Assuming all tables in your report are from the same secured Access database, you
can use code similar to the following to set the Access session information:
Dim CRXReport As New CrystalReport1

Dim CRXTable as CRAXDRT.DatabaseTable

For Each CRXTable In CRXReport.Database.Tables

CRXTable.SetSessionInfo “user”, “password”

Next
Crystal Reports Developer’s Guide 75

Working with Formatting
Working with secure data in reports

If your report connects to a secure data source that requires log on information,
you will not be able to log off of the data source until the Report object has been
closed or has gone out of scope. Keep in mind that if you assign the Report object
to the ReportSource property of the CRViewer object in the Crystal Reports Report
Viewer, the Report object cannot be closed until you assign a new value to the
Report Viewer or close the CRViewer object. Thus, you will not be able to log off
of a secure data source until the report is no longer displayed in the Report Viewer.

Working with Formatting

Using Report Variables
Certain events, like the OnSectionFormat event, may get fired more than once in a
section. For example, a Details section may fire multiple times for a given record if
the program is performing “Keep Section Together” calculations for the report.
When you are using VB variables that are supposed to increment once for each
record (as when you are calculating a running total), you can have problems
maintaining state with these multiple firings.

To prevent these problems, the RDC now enables you to declare Report Variables.
Report variables are Crystal variables that you can use in your VB code. Report
Variables “understand” what’s going on in the report and they increment
appropriately. This enables you to do more of your coding than ever in VB and still
get the results you expect.

There are three methods you use with report variables.

AddReportVariable

You use AddReportVariable to declare a Report Variable. The following code
declares four Report Variables:
� CurrencyVal of the type currency
� LongVal of the type number
� DoubleVal of the type number
� StringVal of the type string.
AddReportVariable crRVCurrency, "CurrencyVal"

AddReportVariable crRVNumber, "LongVal"

AddReportVariable crRVNumber, "DoubleVal"

AddReportVariable crRVString, "StringVal"
76 Crystal Reports Developer’s Guide

7 RDC Programming
GetReportVariableValue

You use GetReportVariableValue to reference the value in a Report Variable. The
following code references the value in the Report Variable, CurrencyVal.
CurVal = GetReportVariableValue("CurrencyVal")

SetReportVariableValue

You use SetReportVariableValue to increment a Report Variable. The following
code sets the value of the Report Variable CurrencyVal to the value of the
expression “CDbl(CurVal) + CDbl(FieldCurrency.Value)”.
SetReportVariableValue "CurrencyVal", CDbl(CurVal) +

CDbl(FieldCurrency.Value)

Note that you can only use Report Variables at runtime and that you must use
double quotes every time you reference such a variable.

Formatting a section or report object conditionally
You can now do conditional formatting using VB code. Crystal Reports has
allowed this in the past with its own formula language but now you can do it in
VB code as well.

This Format event is fired each time this section is formatted, so you can get the
values of the object and perform a variety of formatting functions.

This first example changes the backcolor of the section itself if the value of the
selected field is less than 50000.
Private Sub Section6_Format(ByVal pFormattingInfo As Object)

If Field9.Value < 50000 Then

 Section6.BackColor = vbRed

 Else

 Section6.BackColor = vbWhite

 End If

End Sub

The second example changes the color of the text in the selected field if the value
of that field is less than 50000.
Private Sub Section6_Format(ByVal pFormattingInfo As Object)

If Field9.Value < 50000 Then

 Field9.TextColor = vbRed

 Else

 Field9.TextColor = vbGreen

 End If

End Sub
Crystal Reports Developer’s Guide 77

Working with Formulas/Selection Formulas
Working with Formulas/Selection Formulas

Passing a Selection Formula at Runtime
When you pass the selection formula to Crystal Reports, you use the
RecordSelectionFormula property of the Report object.

Note: Formulas must conform to Crystal Reports’ formula syntax.(i.e. strings
embedded in single quotes while numbers not, etc.). For Crystal Reports to parse a
formula it receives from the application (Visual Basic in this case), the formula must
be identical to a formula that you would enter directly into the report designer. You
can use the MsgBox function in Visual Basic to verify that the formula string being
sent from VB is in a format that can be used by Crystal Reports.

Two ways you can use the RecordSelectionFormula property of the Report object are:
� Hardcoding: you can copy your code from your report and paste it into the

code.
� Using a variable: you can append the value of a variable onto your code when

calling the RecordSelectionFormula property.

CRXReport.RecordSelectionFormula = "{Customer.Region} = ‘CA’"

Note: Any dates passed to Crystal Reports must be in Crystal Reports Date
format, Date(yyyy,mm,dd).

Passing a Formula at runtime
When passing a value to Crystal Reports, you use the.Text property of the
FormulaFieldDefinition object.

First, you create your formula using the Crystal Reports formula language.
� If you are giving it a string value, you must place a string value in it. This will

force the program to treat the formula as a string.
� A single space inside double quotes is a good idea, since this will not print if

left unchanged—yet it holds the string type for when you change the actual
value later from VB.

Place the new formula on your report where you would like to display the passed
value.

If you will be sending a numeric value or date, again place an appropriate value in
the formula in order to establish the data type of the formula.
� To pass a numeric value to a formula, place 0 in the formula when you create

the formula in Crystal Reports.
� To pass a date value to a formula, place the Today function in the formula.
78 Crystal Reports Developer’s Guide

7 RDC Programming
The following code shows how you can send a title to your report from your VB
application. As instructed above, a formula is inserted at the top of the report, and
is named Title. It presently contains a space inside quotes, as in " ".

Sub Command1_Click ()

'if we hard-code the title

CRXReport.FormulaFields.Item(1).text = "'Report Title'"

'If we use the value of the Textbox

Text1.Text = "This is a Title"

CRXReport.FormulaFields.Item(1).text = chr(34) & Text1.text & chr(34)

End Sub

The following code changes the value of a numeric formula at runtime.

Sub Command1_Click ()

'if we hard-code the numeric value

CRXReport.FormulaFields.Item(1).text = "9"

'If we use the value of a variable

x = 65

CRXReport.FormulaFields.Item(1).text = x

End Sub

Changing a subreport’s record selection formula at runtime
Changing the record selection formula for a subreport is similar to changing it for the
main report. Before you can change the record selection formula for a subreport, you
first must open the subreport. Please refer to “Referencing objects in a subreport”
on page 68 for examples of different ways you can access a subreport.

Once you have opened the subreport object, you can use code similar to this to
change its record selection formula.
CRXSubreport.RecordSelectionFormula = "{Customer.Last Year's Sales} > 100000"

The subreport acts like any report, where any object, property, and method that is
accessible by the Report object is the same for a subreport. The only limitation is
that subreports cannot be previewed, printed, or exported as an individual report.

Referencing a report formula using the formula name
The following code sample shows how to reference a report formula at runtime
using the formula name instead of referencing the formula by index.

You can put this code in the General Declarations.
Dim CRXReport As New CrystalReport1

Dim CRXFormulaFields As CRAXDRT.FormulaFieldDefinitions

Dim CRXFormulaField As CRAXDRT.FormulaFieldDefinition

You can put this code in the Form_Load event procedure.
Private Sub Form_Load()

Set CRXFormulaFields = CRXReport.FormulaFields
Crystal Reports Developer’s Guide 79

Working with Grouping
Now you can cycle through the formula fields collection.
For Each CRXFormulaField In CRXFormulaFields

Here you find the formula you require by specifying its name. Note the format that
the .Name property returns.
If CRXFormulaField.Name = "{@formula}" Then

Now you set the formula text.
CRXFormulaField.Text = "{Customer.Name}"

End If

Next

Finally, you can view the report.
Crviewer1.ReportSource = CRXReport

Crviewer1.ViewReport

End Sub

Working with Grouping

Changing the existing group's condition field
For this scenario, assume that a report has been created which is currently grouped
on the City field (For example, }Customer.City}). To change the condition field for
the existing field at runtime, you can use the following code.

Note: This code assumes that you know which field you want to change and that
there is only one group in the report.

You can place this code in the General Declarations section.
Dim CRXReport As New CrystalReport1 'The existing report (ActiveX Designer)

Dim CRXDBField As CRAXDRT.DatabaseFieldDefinition

You can put this code in the FORM_LOAD event procedure.
Private Sub Form_Load()

Currently the group is based on the CITY field, but you want to change it to the
REGION field. This code accesses the first table to get the 12th field which is the
REGION field.
set CRXDBField = CRXReport.Database.Tables.Item(1).Fields.Item(12)

Now you can set the new condition field for the existing group. Since you know
that there is only one group in the report, you can reference it by its name "GH".
CRXReport.Areas.Item("GH").GroupConditionField = CRXDBField

Finally, display the report.
CRViewer1.ReportSource = CRXReport

CRViewer1.ViewReport

End Sub
80 Crystal Reports Developer’s Guide

7 RDC Programming
Adding a new group to the report
For this scenario, assume that a report has been created and it does not contain any
groups. To add a new group to the report at runtime, you can use code similar to
the following:

Note: Please note that using this method will not display the group name on the
report.

You can place this code in the General Declarations section.
Dim CRXReport As New CrystalReport1 'The existing report (ActiveX Designer)

Dim CRXDBField As CRAXDRT.DatabaseFieldDefinition

You can place this code in the FORM_LOAD event procedure.
Private Sub Form_Load()

For this example, you want to add a group that is based on the REGION field. This
code accesses the first table to get the 12th field, which is the REGION field.

set CRXDBField = CRXReport.Database.Tables.Item(1).Fields.Item(12)

Now you can add the new group to the report. Please note that:
� 0 is the GroupNumber in case you add more than one group
� CRXDBField is the ConditionField
� crGCAnyValue is the condition on which the group changes
� crAscendingOrder is the SortDirection
CRXReport.AddGroup 0, CRXDBField, crGCAnyValue, crAscendingOrder

Finally, display the report.
CRViewer1.ReportSource = CRXReport

CRViewer1.ViewReport

End Sub

Adding a group sort field
This scenario requires a report that already contains a group which also must
contain a summary field.

A Group Sort Field can only exist if the group contains a summary field, because
that summary field is what the Sort is based on. In this example, the report is
grouped on {Customer.Region} and the summary field is the "SUM of
Customer.Last Year's Sales (Currency)".

To add a group sort field you can use code similar to the following:

1 Place this code in the General Declarations section.
Dim CRXReport As New CrystalReport1 'The existing report (ActiveX Designer)

Dim CRXSortFields As CRAXDRT.SortFields

Dim CRXSummaryField As CRAXDRT.SummaryFieldDefinition
Crystal Reports Developer’s Guide 81

Working with parameter fields
2 Place this code in the FORM_LOAD event procedure.
Private Sub Form_Load()

3 This code gets the SortFields collection for the groups:
Set CRXCRXSortFields = CRXReport.GroupSortFields

4 Get the first Summary Field which is the '"SUM of Customer.Last Year's Sales
(Currency)".

Set CRXSummaryField = CRXReport.SummaryFields.Item(1)

5 Now add the Group Sort Field.
CRXSortFields.Add CRXSummaryField, crDescendingOrder

6 Finally, display the report.
CRViewer1.ReportSource = CRXReport

CRViewer1.ViewReport

End Sub

Modifying a group’s sort direction at runtime
You can change a group’s sort direction through the SortDirection property of the Area
Object. To change a group’s sort direction you can use code similar to the following:

Note: All the samples are based on the sample database, XTREME.MDB, which is
installed by Crystal Reports.

1 Put this code in the General Declarations section.
Dim CRXReport As New CrystalReport1

2 Put this code in the FORM_LOAD event procedure.
Private Sub Form_Load()

The Item parameter "GH1" refers to the first group header; to access the second
group header you would use "GH2" This line of code sets the SortDirection to
descending.

CRXReport.Areas.Item("GH1").SortDirection = crDescendingOrder

3 Finally, view the report.
CRViewer1.ReportSource = CRXReport

CRViewer1.ViewReport

End Sub

Working with parameter fields
Crystal parameters and stored procedure parameters and are both set through the
ParameterFieldDefinition Object. The following sample code passes four
parameters to a report. The Main Report and the Subreport each have a Stored
Procedure and a Crystal Parameter.
82 Crystal Reports Developer’s Guide

7 RDC Programming
This code can go in the General Declarations Section.
Private Sub Command1_Click()

Dim CRXParamDefs As CRAXDRT.ParameterFieldDefinitions

Dim CRXParamDef As CRAXDRT.ParameterFieldDefinition

Dim CRXSubreport As CRAXDRT.Report

Set CRXParamDefs = CRXReport.ParameterFields

This code cycles through the ParameterFieldDefinitions collection in the main
report.
For Each CRXParamDef In CRXParamDefs

With CRXParamDef

Select Case .ParameterFieldName

It finds and sets the appropriate Crystal parameter.
Case "MainParam"

.SetCurrentValue "Main Report Parameter"

Now it finds and sets the appropriate stored procedure parameter.
Case "[CustomerID]"

.SetCurrentValue "Alfki"

End Select

End With

Next

It opens the appropriate subreport.
Set CRXSubreport = CRXReport.OpenSubreport("sub1")

Set CRXParamDefs = CRXSubreport.ParameterFields

It cycles through the ParameterFieldDefinitions collection for the subreport.
For Each CRXParamDef In CRXParamDefs

With CRXParamDef

MsgBox .ParameterFieldName

Select Case .ParameterFieldName

It finds and sets the appropriate Crystal parameter for the subreport.
Case "SubParam"

.SetCurrentValue "Subreport Parameter"

Now it finds and sets the appropriate stored procedure parameter for the
subreport.
Case "[CustomerID]"

.SetCurrentValue "Anton"

End Select

End With

Next

Finally, it disables parameter prompting so the user won’t be prompted for a value.
CRXReport.EnableParameterPrompting = False

CRViewer1.ReportSource = CRXReport

CRViewer1.ViewReport

End Sub
Crystal Reports Developer’s Guide 83

Working with OLE objects
Working with OLE objects
Setting the location of an OLE object

This example demonstrates how you can set the location of an OLE object at
Runtime using the SetOleLocation command. The example takes three different
OLE objects:
� a bitmap
� part of an Excel worksheet
� part of a Word document.

It cycles through them so the RDC prints a different object each time it formats the
Details section.
Option Explicit

Private Sub Report_Initialize()

 Database.Tables(1).Location = App.Path + "\Author.mdb"

End Sub

Private Sub SectionDetails_Format(ByVal pFormattingInfo As Object)

Object to hold the bitmap:
Dim bmpHold As StdPicture

 Dim iModNum As Integer

Calculate an integer to pass in as the object name.
 iModNum = cRecNum.Value Mod 3 + 1

Take an action based on the integer passed in.
 Select Case iModNum

The bitmap object:
 Case 1

Set the variable to a bitmap.
 Set bmpHold = LoadPicture(App.Path & res\SampleBitmap1.bmp")

Set the height and width of the Report object equal to the actual values for the
bitmap - the StdPicture object defaults to HiMetric, the Report uses twips.
Set the bitmap on the Report equal to the variable.

 Set cOLEObj.FormattedPicture = bmpHold

Convert from HiMetric to twips.
 cOLEObj.Height = bmpHold.Height * 567 / 1000

 cOLEObj.Width = bmpHold.Width * 567 / 1000

The Excel Worksheet object:
 Case 2

 cOLEObj.SetOleLocation App.Path & "\res\SampleExcel1.xls"

 cOLEObj.Height = 1800

 cOLEObj.Width = 5791

The Word Document object:
Case 3

 cOLEObj.SetOleLocation App.Path & "\res\SampleWord1.doc"

 cOLEObj.Height = 322

 cOLEObj.Width = 8641

 End Select

End Sub
84 Crystal Reports Developer’s Guide

7 RDC Programming
Working with Sorting

Changing the existing sort's condition field
For this scenario, a report is created which is currently sorted on the Customer
Name field (For example, {Customer.Customer Name}). To change the condition
field for the existing field at runtime, the following code can be used:
'General Declarations

Dim CRXReport As New CrystalReport1

Dim CRXDatabaseField As CRAXDRT.DatabaseFieldDefinition

Private Sub Form_Load()

Currently the sort is based on the Customer Name field and the application is to
change it to the Last Year's Sale's field. This field must be present on the report. The
code accesses the first table to get the 8th field.
Set CRXDatabaseField = CRXReport.Database.Tables.Item(1).Fields.Item(8)

There is only one Sort on this report so we will access the first item of the SortFields
collection and set the field to the Last Year's Sale's field.
CRXReport.RecordSortFields.Item(1).Field = CRXDatabaseField

CRViewer1.ReportSource = CRXReport

CRViewer1.ViewReport

End Sub

Adding a new sort field to a report
In this example, we’re going to add a sort field that currently isn’t sorted.

You can put code like this in the General Declarations section.
Dim CRXReport As New CrystalReport1

Dim CRXDatabaseField As CRAXDRT.DatabaseFieldDefinition

Private Sub Form_Load()

Currently there is no sort in this Report. To add the sort field Customer Name, the
application must first get the {Customer.Customer Name} field from the Customer
Table. This code accesses the first table to get the 2nd field.
Set CRXDatabaseField = CRXReport.Database.Tables.Item(1).Fields.Item(2)

Now add the field to the SortFields Collection and set the Sort Order to ascending.
CRXReport.RecordSortFields.Add CRXDatabaseField, crAscendingOrder

Note: If the SortField is added while the Report is viewing, you will have to
refresh the viewer before the new sort will be active. This can be done by clicking
the Refresh button in the Report Viewer or refreshing the viewer through code.
For example,

CRViewer1.Refresh

CRViewer1.ReportSource = CRXReport

CRViewer1.ViewReport

End Sub
Crystal Reports Developer’s Guide 85

Working with Summary Fields
Working with Summary Fields

How to change summary field kind
This example populates a combo box with the various summary field kind options
and then sets a summary field to the kind selected. This code assumes that you
have elsewhere declared a variable cr for your report.
Private Sub Form_Load()

Dim i As Integer

Populate the combo box.
cmbSummaryType.AddItem "crSTSum"

cmbSummaryType.AddItem "crSTAverage"

cmbSummaryType.AddItem "crSTSampleVariance"

cmbSummaryType.AddItem "crSTSampleStandardDeviation"

cmbSummaryType.AddItem "crSTMaximum"

cmbSummaryType.AddItem "crSTMinimum"

cmbSummaryType.AddItem "crSTCount"

cmbSummaryType.AddItem "crSTPopVariance"

cmbSummaryType.AddItem "crSTPopStandardDeviation"

cmbSummaryType.AddItem "crSTDistinctCount"

Get the SummaryFields collection.
Set CRXSummaryFieldDefinitions = CRXReport.SummaryFields

txtCount = CrystalSummaryFieldDefinitions.Count

Cycle through the collection.
For i = 1 To CRXSummaryFieldDefinitions.Count

 Set CRXSummaryFieldDefinition =

CRXSummaryFieldDefinitions.Item(i)

 lstFieldDefinition.AddItem CRXSummaryFieldDefinition.Name

Next i

End Sub

Change the summary field kind.
Private Sub lstFieldDefinition_Click()

 Set CRXSummaryFieldDefinition =

CRXSummaryFieldDefinitions.Item(lstFieldDefinition.ListIndex + 1)

 With CRXSummaryFieldDefinition

 cmbSummaryType.Text = cmbSummaryType.List(.SummaryType)

 txtKind = .Kind

 txtName = .Name

 txtNumberofBytes = .NumberOfBytes

 txtValue = OnFormat

 txtValueType = .ValueType

 End With

End Sub
86 Crystal Reports Developer’s Guide

7 RDC Programming
Working with Text Objects

Simple and complex text objects
There are two types of text objects: simple and complex.
� Simple text objects are processed internally by the report engine.
� Complex complex text objects are handled by CRPAIG32.DLL.

Only complex text objects can handle carriage returns and line feeds.

If you want to use carriage returns and line feeds in your text object, you will need
to force the text object to be complex. To do this, double-click on the text object to
edit it and enter a carriage return (press the enter key) inside of it. Then, when
carriage returns and line feeds are passed to the text object through your code, the
RDC will process them properly.

Changing the contents of a Text Object
You can use text objects in a variety of different ways:
� You can use a text object in a simple way to personalize a report based on your

users’ input (changing the report title, for example).
� You can also use a text object to display the results of complex operations on

database data.

Text objects are very flexible and powerful reporting tools.

To change the contents of a text object you use the SetText method.
� The Text property of the object model’s TextObject gives you information

about the existing value; it is a read-only property however.
� To assign a new value to the property, you must use the SetText method.

Note: The following examples change the contents of a Text object during the Load
event of the Form containing the Crystal Report Viewer ActiveX control. This is
especially important if the value of your text object is dependent on data in your data
source. Since this is also a common place to change the data source used by a report,
changing values in Text objects during the Load event often becomes convenient.

Making a simple text change

This example simply assigns a string to the Text1 object in the report.
Private Sub Form_Load()

Dim CRXReport As New CrystalReport1

‘ More code here

CRXReport.Text1.SetText “Here is some text from my app”

CRViewer1.ReportSource = CRXReport

CRViewer1.ViewReport

End Sub
Crystal Reports Developer’s Guide 87

Working with Text Objects
Displaying a calculated result

A more complicated technique may be to access data in a database, calculate a new
value in Visual Basic, and then display that value through a Text object on the
report. In such cases, you can supply a text object for each result when you design
your report in RDC Designer. The following code assumes that you have done this:
Private Sub Form_Load()

Set up the variables.
Dim maxValue As Currency

Dim maxValueString As String

Dim CRXReport As New CrystalReport1

Dim rs As New ADODB.Recordset

Set your data source.
rs.Open “SELECT * FROM Customer”, _

“DSN=Xtreme Sample Database;”, adOpenKeyset

CRXReport.Database.SetDataSource rs

maxValue = 0

Read the records and calculate the results.
rs.MoveFirst

Do While Not rs.EOF

If rs.Fields(“Last Year’s Sales”) > maxValue Then

maxValue = rs.Fields(“Last Year’s Sales”)

End If

rs.MoveNext

Loop

Format and assign the results to the text object.
maxValueString = “The maximum value is “ & _

Format(maxValue, “Currency”)

CRXReport.Text1.SetText maxValueString

Preview the report.
CRViewer1.ReportSource = CRXReport

CRViewer1.ViewReport

End Sub

In this example, we are finding the maximum value of the Last Year’s Sales field
from the new data source, formatting that value as Currency, then displaying a
message containing the value through a Text object on the report. As you can see,
Text objects provide many options for controlling the output of data in your reports.
88 Crystal Reports Developer’s Guide

Programming the Crystal Report Viewers 8

The Crystal Report Viewer is a front-end user interface for
viewing reports. In this chapter you will find detailed
information on implementing the ActiveX and Java Bean
viewers in your application.
Crystal Reports Developer’s Guide 89

Enhancements to the Report Viewer
Enhancements to the Report Viewer
The Report Viewer has been enhanced substantially in Version 8:
� The Report Viewer uses multi-threading. As a result, your users can begin

viewing a report sooner, even if the report requires that it all be run before
certain values are generated (page numbering, for example, of the style “page
24 of 125”). In such a case, the Report Engine uses place holders for the yet-to-
be-generated total page count. When that page count is completed, the Report
Engine inserts the missing data into the pages already read.

� The report’s group tree is loaded on-demand. This allows your users to use the
tree functionality for navigation even when only a partial group tree has been
loaded.

� You can specify a page number to go to in the report you are currently
viewing.

� You can use the Select Expert and the Search Expert in the viewer to select
records and search for specific values using formulas.

� The Report Viewer supports the use of rotated text in the report.
� The toolbar for the Report Viewer for ActiveX has a new look.
� You can customize the Report Viewer by resizing sections of the toolbar,

adding custom bitmaps, and more.
� There is a Help button implemented for applications. Clicking on the Help button

can fire an event to your application so it can display the appropriate help.
� There are over 30 events giving you the ability to make previewing the report a

truly interactive activity.

For a better understanding of all the capabilities of the Report Viewer, review the
viewer object model (CRVIEWERLibCtl) in the Visual Basic Object Browser.

Note: Visit the Seagate Software Developer Zone web site at
http://www.seagatesoftware.com/products/dev_zone.
Click Support to get links for finding documentation and knowledge base articles
about the Report Designer Component.

Application Development with Crystal Report Viewers
Developing applications that display reports on screen is now a straightforward
process. Crystal Reports includes the Crystal Report Viewers as easy to use but
complex components that can be embedded directly in an application. Once added
to an application, reports accessed through the Report Engine Automation Server,
the Report Designer Component, or the Crystal Web Reports Server can be
displayed right inside your own applications. The Report Viewer retains all of the
powerful formatting, grouping, and totalling power of the original report, and
your users get access to data in a dynamic and clear format.
90 Crystal Reports Developer’s Guide

8 Programming the Crystal Report Viewers
Crystal Reports provides two Report Viewers specifically designed for application
development: the Crystal Report Viewer for ActiveX and the Crystal Report
Viewer Java Bean. Both provide a complete object model for programming and
manipulating the Report Viewer at runtime inside your applications. Simply
displaying a single report inside the Report Viewer is a simple process requiring
only a couple of lines of code. However, if necessary for your application, you have
the option of complete control over how the Report Viewer appears and functions.

With the Crystal Report Viewer as a front-end user interface for viewing reports,
Crystal Reports development technologies allow you to develop even complex
client/server or multi-tier applications that access, manipulate, and display data
for intranet systems, workgroups, or any group of people needing clear and
informative data on a regular basis. Design robust Business Support systems and
Enterprise Information Management applications delivering even the most
complex data through the Crystal Report Viewers.

This chapter describes both the ActiveX and Java Bean versions of the Report
Viewer in relation to designing applications using Crystal Reports development
technologies.

Crystal Report Viewer for ActiveX
The Crystal Report Viewer for ActiveX is a standard ActiveX control that can be
added to an application in any development environment that supports ActiveX.
Programmers using Visual Basic, Delphi, Visual C++, or Borland C++
programmers all receive the benefit of quickly adding a powerful report viewer to
an application with little coding.

As a standard component, the ActiveX Report Viewer exposes several properties
at design time, but also provides a complete object model with properties,
methods, and events that can be programmed at runtime. The following sections
discuss various topics for working with the ActiveX Report Viewer in Visual Basic.
If you are using a development environment other than Visual Basic, use these
topics as a guideline, but refer to your development software documentation for
specific information on working with ActiveX controls.

The Crystal Report Viewer, as an ActiveX control, includes a complete object
model for controlling how it appears in an application, and how it displays reports.
Simply displaying a report in the Report Viewer window takes little code, but to
truly make use of its power requires a broader understanding of how to work with
the object model.

Related topics:
“Adding the Report Viewer to a Visual Basic project” on page 92.

“Using the CRViewer object” on page 92.
Crystal Reports Developer’s Guide 91

Crystal Report Viewer for ActiveX
Adding the Report Viewer to a Visual Basic project
If you create a new report using the Create Report Expert in the Crystal Report
Designer Component, the Report Viewer control can be automatically added to a
Form in your Visual Basic project. However, there may be times when you need to
add the control by hand. In addition, the Report Viewer control can be
implemented in other environments, many of which may not support ActiveX
designers, meaning the Create Report Expert is unavailable.

Use the following steps to add the Crystal Report Viewer ActiveX control to a Form
in your Visual Basic application. This tutorial assumes the Form already exists in
your project and is named Form1.

1 First, you must verify that a reference to the Report Viewer control exists in
your project. From the Project menu, select the Components command. The
Components dialog box appears.

2 On the Controls Tab of the Components dialog box, scroll through the list of
ActiveX controls until you find Crystal Report Report Viewer.

Note: If you do not see the Crystal Report Report Viewer control in the list, use
the Browse button to locate the CRVIEWER.DLL component in the C:\Program
Files\Seagate Software\Viewers\ActiveXViewer directory.

3 If the check box next to the Report Viewer control is not toggled on, toggle it
on now.

4 Click OK, and the CRViewer control will appear in the Visual Basic toolbox.

5 Click the CRViewer control on the toolbox, then draw the Report Viewer
control on your form by dragging a rectangle across the form with the mouse
pointer. An instance of the control will be added to your Form.

6 Adjust the size and position of the Report Viewer on your form, and use the
Properties window to adjust the overall appearance of the control.

Using the CRViewer object
The CRViewer object represents an instance of the Report Viewer control that has
been added to your project. If you have created a report using the Crystal Report
Designer Component and accepted the defaults for adding the Report Viewer to
your project, the Report Viewer control in your application will be named
CRViewer1. CRViewer1 can be used in your code as a CRViewer object. For
instance, the following code demonstrates a simple technique for assigning a
report to the Report Viewer, and displaying it:
CRViewer1.ReportSource = report

CRViewer1.ViewReport

For more information on the properties and methods available with this object,
refer to the Report Viewer object model and the CRViewer object.
92 Crystal Reports Developer’s Guide

8 Programming the Crystal Report Viewers
The topics listed below describe several aspects of the Report Viewer object model
and present examples of how to use the Report Viewer objects, methods,
properties and events in your Visual Basic code.
� “Specifying a report” on page 93
� “Working with secure data in reports” on page 93
� “Handling Report Viewer events” on page 94
� “Moving through a report” on page 95
� “Printing the report” on page 96
� “Controlling the appearance of the Report Viewer” on page 96
� “Connecting to the Web Reports Server” on page 97

Specifying a report

The most important task with the Report Viewer control is to specify a report and
display it at runtime. This is easily handled with the ReportSource property and
the ViewReport method.
Private Sub Form1_Load()

 Dim report As New CrystalReport1

 CRViewer1.ReportSource = report

 CRViewer1.ViewReport

End Sub

In this example, assigning the report and displaying it in the Report Viewer is
handled when the Form containing the Report Viewer object is loaded into the
application. A reference to the report is first obtained in the form of a Report object
representing a Crystal Report Designer Component that has been added to the
Visual Basic project.

ReportSource is a property of the Report Viewer’s CRViewer object which
corresponds directly to the Report Viewer control added to the project. In this case,
that control has been named CRViewer1. The ReportSource property can accept a
report in the form of a Report Object exposed by the Report Designer Component
or the Crystal Web Reports Server.

Finally, the ViewReport method is called. This method has no parameters and has
the job simply of displaying the specified report inside the Report Viewer control.

Working with secure data in reports

If your report connects to a secure data source that requires log on information,
you must release the Report object from the Report Viewer before you can log off
of the data source. This can be done by assigning a new Report object to the
ReportSource property, or by closing the CRViewer object. Until this is done, the
data source will not be released from the Report object and you cannot log off.
Crystal Reports Developer’s Guide 93

Crystal Report Viewer for ActiveX
Handling Report Viewer events

The Report Viewer control allows you to write custom code for several events relating
to user interaction with both the control window and the report displayed. For
instance, if you design a drill down report using the Report Designer Component,
your users are likely to want to drill down on detail data. You can provide custom
handling of such an event by writing code fort the DrillOnGroup event.

To add event procedures to the Report Viewer control for the DrillOnGroup and
PrintButtonClicked events:

1 In the Visual Basic Project window, select the Form containing the Report
Viewer control.

2 Click the View Code button in the toolbar for the Project window. A code
window for the form appears.

3 In the drop-down list box at the upper left hand corner of the code window,
select the CRViewer1 control. (This name will appear different if you changed
the Name property of the control in the Properties window.)

4 In the drop-down list box at the upper right corner of the code window, select
the DrillOnGroup event. A procedure appears for handling the event.

5 Add the following code to the DrillOnGroup event procedure:
Private Sub CRViewer1_DrillOnGroup(GroupNameList As Variant, _

ByVal DrillType As CRVIEWERLibCtl.CRDrillType, UseDefault As Boolean)

MsgBox "You're drilling down on the " & GroupNameList(0) & " group!"

End Sub

6 In the drop-down list box at the upper right of the code window, select the
PrintButtonClicked event. A new procedure appears for this event.

7 Add the following code for the new event:
Private Sub CRViewer1_PrintButtonClicked(UseDefault As Boolean)

MsgBox "You clicked the Print button!"

End Sub

The DrillOnGroup event is triggered when a user double-clicks on a chart, on a
map, or on a report summary field. The code added to the event procedure will
display a message box with the name of the group. The PrintButtonClicked event
is fired if the user clicks the print button on the Report Viewer window. Note that
any code added to these event handlers replaces the default action of the event. A
more practical use of these events would be to display custom dialogs or perform
other report related calculations and procedures.
94 Crystal Reports Developer’s Guide

8 Programming the Crystal Report Viewers
Moving through a report

Often, reports consist of several pages. The Report Viewer control provides, by
default, controls that allow a user to move through the pages of the report.
However, you may need to implement a system through which your own code
controls when separate pages are displayed.

The CRViewer object provides several methods for moving through a report,
including methods to move to specific pages:
� ShowFirstPage
� ShowLastPage
� ShowNextPage
� ShowPreviousPage
� ShowNthPage
� GetCurrentPageNumber

And methods for moving to specific groups in the report:
� ShowGroup

Moving through pages

The first set of methods designed for moving through the pages of a report are
straightforward and correspond directly to controls that normally appear on the
Report Viewer control window. ShowFirstPage, ShowLastPage, ShowNextPage,
and ShowPreviousPage simply switch to the first, last, next, or previous page in
the report, respectively. They are all used in the same manner in code:
CRViewer1.ShowFirstPage

CRViewer1.ShowLastPage

CRViewer1.ShowNextPage

CRViewer1.ShowPreviousPage

If the requested page cannot be displayed, for instance, if the last page in the report
is currently displayed and ShowNextPage is called, the currently displayed page
will be refreshed.

For more controlled movements through the report, ShowNthPage can display a
specific page of the report:

CRViewer1.ShowNthPage 5

This method accepts a page number as its only argument. If the selected page number
does not exist, for example, page 10 is selected from a 6 page report, then either the last
or first page will be displayed, depending on the page number requested.

As a convenience, the GetCurrentPageNumber method has also been included.
You can obtain the currently displayed page from within your code at any time
using this method:
Dim pageNum As Long

pageNum = CRViewer1.GetCurrentPageNumber
Crystal Reports Developer’s Guide 95

Crystal Report Viewer for ActiveX
Moving to a specific group

Grouping is a common feature of reports, and, since page numbers can frequently
change based on current data, it may be more appropriate to navigate through a report
using groups. For example, if a report is grouped by cities within states, and by states
within countries, you can include code to display the group for a specific city.

Printing the report

Although the Report Viewer control is designed primarily for displaying reports
on screen, users frequently want a hard-copy of the data. The PrintReport method
provides a simple means of allowing access to the Windows print features. Simply
call the method as below, and Windows can take over.
Dim Report As New Crystalreport1

CRViewer1.ReportSource = Report

CRViewer1.PrintReport

Controlling the appearance of the Report Viewer

By default, the Report Viewer window includes several controls for allowing users
to navigate through a report, enlarge the view of a report, refresh the data in a
report, and more. There may be applications that you create in which you want to
limit a user’s interaction, change the look of the Report Viewer window, or provide
an alternate means of accessing the same functionality.

For instance, you could turn off the navigation controls in the Report Viewer, then
create your own controls to navigate through the report that call the
ShowFirstPage, ShowLastPage, ShowNextPage, ShowPreviousPage, and
ShowNthPage methods. (See “Moving through a report” on page 95.) For
handling such custom features, the Report Viewer object model provides several
properties for enabling and disabling different features of the Report Viewer
ActiveX control:
� DisplayBackgroundEdge
� DisplayBorder
� DisplayGroupTree
� DisplayTabs
� DisplayToolbar
� EnableAnimationCtrl
� EnableCloseButton
� EnableDrillDown
� EnableGroupTree
� EnableNavigationControls
� EnablePrintButton
96 Crystal Reports Developer’s Guide

8 Programming the Crystal Report Viewers
� EnableProgressControl
� EnableRefreshButton
� EnableSearchControl
� EnableStopButton
� EnableToolbar
� EnableZoomControl

Using these properties requires assigning a value of either True or False. True
enables the specified control or feature of the Report Viewer, while False disables
it. All controls and features are, by default, enabled.

The following code demonstrates how to disable the entire toolbar for the Report
Viewer window:

CRViewer1.DisplayToolbar = False

Connecting to the Web Reports Server

The Web Reports Server provides not only a powerful means of distributing
reports across the web, but also provides a report distribution mechanism that can
be incorporated into multi-tier applications. By using the Crystal Report Viewer
for ActiveX as a client-side report viewer, the Web Reports Server can become a
report distribution engine within a larger application that runs over a network.

Connecting to the Web Reports Server requires accessing two new ActiveX
components: the WebReportBroker and the WebReportSource. The following
samples demonstrate how to connect to the Web Reports Server using
“Connecting from Visual Basic” on page 97, and “Connecting from VBScript” on
page 98, inside a web page.

Connecting from Visual Basic

The following code is an example of how to connect to the Web Reports Server
from Visual Basic and assign a report to the Crystal Report Viewer for ActiveX.
This assumes that you have added the ActiveX viewer control to a form named
Form1, and the ActiveX viewer control is named CRViewer1.
Private Sub Form1_Load()

Dim webBroker, webSource

Set webBroker = CreateObject("WebReportBroker.WebReportBroker")

Set webSource = CreateObject("WebreportSource.WebReportSource")

webSource.ReportSource = webBroker

webSource.URL = "http://<machinename>/scrreports/xtreme/hr.rpt"

webSource.Title = "Employee Profiles"

CRViewer1.ReportSource = webSource

CRViewer1.ViewReport

End Sub
Crystal Reports Developer’s Guide 97

The Crystal Report Viewer Java Bean
Connecting from VBScript

The following code assumes you have added the Crystal Report Viewer for
ActiveX to a web page using the <OBJECT> tag and assigned it an ID of CRViewer.

<OBJECT ID="WebSource" Width=0 Height=0>

CLASSID="CLSID:F2CA2115-C8D2-11D1-BEBD-00A0C95A6A5C"

CODEBASE="viewer/ActiveXViewer/swebrs.dll#Version=1.2.0.5"

</OBJECT>

<OBJECT ID="WebBroker" Width=0 Height=0>

CLASSID="CLSID:F2CA2119-C8D2-11D1-BEBD-00A0C95A6A5C"

CODEBASE="viewer/ActiveXViewer/swebrs.dll#Version=1.2.0.5"

</OBJECT>

<OBJECT ID="Export" Width=0 Height=0>

CLASSID="CLSID:BD10A9C1-07CC-11D2-BEFF-00A0C95A6A5C"

CODEBASE="viewer/ActiveXViewer/sviewhlp.dll#Version=1.0.0.4"

</OBJECT>

<SCRIPT LANGUAGE="VBScript">

<!--

Sub Page_Initialize

Dim webBroker

Dim webSource

Set webBroker = CreateObject("WebReportBroker.WebReportBroker")

Set webSource = CreateObject("WebReportSource.WebReportSource")

webSource.ReportSource = webBroker

webSource.URL = Location.Protocol + "//" + Location.Host + _

"/scrreports/xtreme/invent.rpt"

CRViewer.ReportSource = webSource

CRViewer.ViewReport

End Sub

-->

</SCRIPT>

The Crystal Report Viewer Java Bean
The Crystal Report Viewer Java Bean (or Report Viewer Bean) can be added to an
application in any development environment that supports Java (version 1.1).
Programmers receive the benefit of quickly adding a powerful report viewer to an
application with little coding.

As a standard component, the Crystal Report Viewer Java Bean exposes several
properties at design time, but also provides a complete object model with
properties, methods, and events that can be programmed at runtime. The
following discusses one approach to creating an application using the Crystal
Report Viewer Java Bean. It describes the creation of a simple Applet which will
allow a report to be viewed from your browser.

This example uses the Bean Box a component of the Bean Developer Kit (BDK)
from Sun Microsystems Inc. The Bean Box is not intended to be used for serious
application development, rather as a platform for testing Beans interactively at
design time, and creating simple applets for run time testing. The Bean Box is
available for download from Sun Microsystems.
98 Crystal Reports Developer’s Guide

8 Programming the Crystal Report Viewers
Adding the Report Viewer Bean to the project
To add the Report Viewer Bean to the Bean Box:

1 Locate the JAR file called ReportViewerBean.jar in the "Viewers" directory
(\SeagateSoftware\Viewers\JavaViewerBean).

2 Either copy the file to the \jars subdirectory of the BDK
or

From the Bean Box Select LoadJar from the File menu and specify the
pathname of the file.

3 The Crystal Report Viewer Icon should appear in the ToolBox palette.

Creating a simple applet with the Report Viewer
To add the Report Viewer Bean to the Bean Box Composition window and create
an applet:

1 Click on the Report Viewer Beans name (Crystal Report Viewer) in the
ToolBox palette.

2 Click on the location in the Bean Box Composition window where you want
the Report Viewer Bean to appear.

3 Resize the Report Viewer in the Composition window until you are able to see
the controls and report window.

4 In the Bean Box Property Sheet window you will see the list of Report Viewer
Bean properties. These can be set and edited. For example to view a report
click on the reportName property. When the dialog box appears enter the URL
of a report file (for example: "http://localhost/scrreports/craze/
adcont2s.rpt").
The report should be displayed in the Crystal Report Viewer Report window.

5 To create a simple applet select MakeApplet from the File menu. This will
create an applet which when called from your browser will display the report
specified in the reportName property. You will be prompted to specify a
directory where your applet and its supporting file will be placed (or the
default tmp subdirectory of the beanbox directory).

If you look at the directory containing the applet, you will notice that there are a
number of supporting files and directories. Locate the html file
(<appletname>.html) and click on it. Your default browser should display the
Report Viewer and the report.

The minimum required to actually run the application using the bean is:
� the html file which references the applet class file
� the extracted ReportViewerBean.jar file and any supporting jar files
� the applet class file .
Crystal Reports Developer’s Guide 99

The Crystal Report Viewer Java Bean
100 Crystal Reports Developer’s Guide

Programming the Embeddable Crystal
Reports Designer Control 9

This chapter demonstrates how to integrate the Embeddable
Crystal Reports Designer Control (Embeddable Designer)
into your application. Included are tutorials on creating
sample applications in both Microsoft Visual Basic and
Microsoft Visual C++. A brief section on creating reports in
the designer at runtime is also included.
Crystal Reports Developer’s Guide 101

Overview
Overview
The Embeddable Crystal Reports Designer Control (Embeddable Designer) is a
new addition to the Report Designer Component. Easily integrated into your
application, the Embeddable Designer provides your users with an interactive
environment to design or edit Crystal Reports.

The following examples demonstrate how to create a sample application using the
Embeddable Designer in both Microsoft Visual Basic and Microsoft Visual C++.
Two tutorials are provided:
� “Creating a Microsoft Visual Basic sample application with the Embeddable

Designer” on page 102
� “Creating a Microsoft Visual C++ sample application with the Embeddable

Designer” on page 108

Creating a Microsoft Visual Basic sample application
with the Embeddable Designer

This tutorial assumes that you have prior knowledge of Microsoft Visual Basic,
Crystal Reports, and the Report Designer Component. The following procedure and
sample code detail how to create an application that demonstrates the Embeddable
Designer. The application will consist of a single form with a tab control and buttons
to create a new report or open an existing report. The tab control has two property
pages. The first page (Designer tab) contains the Embeddable Designer, and the
second page (Viewer tab) contains the Crystal Reports Viewer Control. See
“Programming the Crystal Report Viewers” on page 89. With the application
running, you will be able to open a new report or an existing report in the
Embeddable Designer. After designing or editing a report, view it in the Crystal
Report Viewer. When you go back to the Embeddable Designer to make changes,
you’ll see those changes updated automatically in the Crystal Report Viewer.

Note: The sample application was created in Microsoft Visual Basic version 6.0
with Service Pack 4.

This tutorial contains the following steps:
� “Step 1: Creating the user interface” on page 103
� “Step 2: Writing the code” on page 104
� “Step 3: Running the Embeddable Designer application” on page 107.
102 Crystal Reports Developer’s Guide

9 Programming the Embeddable Crystal Reports Designer Control
Step 1: Creating the user interface
In this step, you will add the references, components, forms, and controls for the
application.

1 Create a new Standard EXE project.

2 Add the following components to the project:
� Crystal Reports Viewer Control
� Embeddable Crystal Reports 8.5 Designer Control
� Microsoft Common Dialog 6.0
� Microsoft Tabbed Dialog Control 6.0 (Sp4).

3 Add the following reference to the project:
� Crystal Reports 8.5 ActiveX Designer Design and Runtime Library.

Note: See “Programming the Crystal Report Viewers” on page 89 for more
information.

4 Add the following controls from the Toolbox to the form:
� three CommandButton controls
� Common Dialog (Microsoft Common Dialog Control 6.0)
� SSTab1 (Microsoft Tabbed Dialog Control 6.0 (SP4))
� CRDesignerCtrl (Embeddable Crystal Reports 8.5 Designer Control)
� CRViewer (Crystal Report Viewer Control).

5 Set the properties for the form and the controls:
� Form1 (Main form for the application):

� Name = frmMain
� Caption = Embeddable Crystal Reports 8.5 Designer Control Sample
� Height = 8265
� Width = 10815

� SStab (Tabbed control containing the Embeddable Designer and Report
Viewer controls):

Note: Click the tabs on SSTab1 to access the separate Caption properties.
� Name = SSTab1
� Tabs = 2
� Tab1 Caption = Design
� Tab2 Caption = Preview
� Enabled = False
� Height = 7600
� Left = 0
� Tab Height = 300
� Top = 130
� Width = 10825
Crystal Reports Developer’s Guide 103

Creating a Microsoft Visual Basic sample application with the Embeddable Designer
� CRDesignerCtrl1 (Designs and edits reports):
Note: Place the control on the tab labeled “Designer.”

� Name = CRDesignerCtrl1
� Height = 6540
� Left = 0
� Top = 0
� Width = 10325

� CRViewer (Views reports):
� Name = CRViewer1
� Height = 10340
� Left = 120
� Top = 360
� Height = 6600

� CommonDialog (Creates an Open dialog to select reports):
� Name = CommonDialog1
� Filter = Crystal Reports |*.rpt

� Button1 (Creates a new report):
� Name = cmdNewReport
� Caption = &New Report
� Left = 120
� Top = 7850

� Button2 (Opens an existing report):
� Name = cmdOpenReport
� Caption = &OpenReport
� Left = 1950
� Top = 7850

� Button3 (Closes the form and exits the application):
� Name = cmdExit
� Caption = E&xit
� Left = 9030
� Top = 7850

Step 2: Writing the code
In this step you will add the code to:
� create a new report
� create an Open dialog box to open an existing report
� set the report object to CRDesignerCtrl1 and view the report in design mode
� set the report object to CRViewer1, set the zoom level, and view the report
� refresh the report when switching from the Designer tab to the Viewer tab on

the Microsoft Tabbed Dialog Control.
104 Crystal Reports Developer’s Guide

9 Programming the Embeddable Crystal Reports Designer Control
1 Type or insert the sample code below into the code module of frmMain.

2 Once you have added the code, on the Run menu click Start to run the
application.

Note: Error handling is not included in the code samples.

��������	�
����

Dim m_Application As New CRAXDDRT.Application

Dim m_Report As CRAXDDRT.Report

' ***

'DisplayReport is a procedure that

' - Enables the Tab control the first time a report is created

' or opened.

' - Sets the report object to the Embeddable Designer(CRDesigner1).

' - Disables the Help menu in the Embeddable Designer.

' - Sets the report object to the Crystal Report Viewer Control

' (CRViewer1).

' - Sets the Crystal Reports Viewer to view the report.

'

Public Sub DisplayReport()

' Enable the tab control if disabled.

If SSTab1.Enabled = False Then SSTab1.Enabled = True

' Set the Report Object

CRDesignerCtrl1.ReportObject = m_Report

' Note----------------

' Set all other properties for CRDesignerCtrl1 after setting the

' ReportObject property

' --------------------

' Disable the Help menu

CRDesignerCtrl1.EnableHelp = False

' Set the report source

CRViewer1.ReportSource = m_Report

' Set the viewer to view the report

CRViewer1.ViewReport

' Set the zoom level to fit the page

' to the width of the viewer window

CRViewer1.Zoom 1

End Sub

' ***

Private Sub Form_Load()

'Set the tab control to display the Designer tab

'when the form is loaded

SSTab1.Tab = 0

End Sub
Crystal Reports Developer’s Guide 105

Creating a Microsoft Visual Basic sample application with the Embeddable Designer
' ***

Private Sub SSTab1_Click(PreviousTab As Integer)

' Refresh the report when clicking Preview,

' without refreshing the data from the server.

If PreviousTab = 0 Then CRViewer1.RefreshEx False

End Sub

' ***

' Create a new report and display it in the Embeddable Designer

'

Private Sub cmdNew_Click()

' Set the report object to nothing

Set m_Report = Nothing

' Create a new report

Set m_Report = m_Application.NewReport

' Call DisplayReport to set the report to the Embeddable Designer

' and the Crystal Report Viewer and then display the report in the

' Embeddable Designer.

Call DisplayReport

End Sub

' ***

' Use the Microsoft Common Dialog control to open a report.

'

Private Sub cmdOpen_Click()

CommonDialog1.CancelError = True

On Error GoTo errHandler

' Display the open dialog box

CommonDialog1.ShowOpen

' Set the report object to nothing

Set m_Report = Nothing

' Open the selected report

Set m_Report = m_Application.OpenReport(CommonDialog1.FileName, 1)

' Call DisplayReport to set the report to the Embeddable Designer

' and the Crystal Report Viewer

Call DisplayReport

Exit Sub

errHandler:

'User cancelled dialog

End Sub
106 Crystal Reports Developer’s Guide

9 Programming the Embeddable Crystal Reports Designer Control
' ***

Private Sub cmdAbout_Click()

frmAbout.Show vbModal

End Sub

' ***

Private Sub cmdExit_Click()

Unload Me

End Sub

Step 3: Running the Embeddable Designer application
In this step you will:
� create and design a new report in the Embeddable Designer
� view the report and any changes made to the report
� open and edit an existing report in the Embeddable Designer
� view the report and any changes made to the report.

1 With the application running, click New Report.
An empty report will appear in the Embeddable Designer.

Note: The interface for the Embeddable Designer is the same one used for
ActiveX Designer reports created in the Microsoft Visual Basic IDE with the
Crystal Reports Report Designer Component.

2 Design a new report to view.
If you are not familiar with the designer environment, see “Designing reports
in the Embeddable Designer” on page 117 for a step-by-step procedure on
creating a simple report off the Xtreme Sample Database ODBC data source.

3 Click Preview to view the report in the Crystal Report Viewer.

4 Click Design and make some changes to the report. Then click Preview to see
the changes in the Crystal Report Viewer.

5 Click Open.

6 In the Open dialog box select one of the sample reports and click Open to view
the report in the Embeddable Designer.

7 Click Preview to view the report in the Crystal Report Viewer.

8 Click Design and make some changes to the report. Then click Preview to see
the changes in the Crystal Report Viewer.
Crystal Reports Developer’s Guide 107

Creating a Microsoft Visual C++ sample application with the Embeddable Designer
Creating a Microsoft Visual C++ sample application
with the Embeddable Designer

This tutorial assumes that you have prior knowledge of Microsoft Visual C++,
Crystal Reports, and the Report Designer Component. The following procedure
and sample code create an application that demonstrates the Embeddable
Designer. The application will consist of a main dialogs for the Embeddable
Designer, and for the Crystal Reports Viewer Control. For details, see
“Programming the Crystal Report Viewers” on page 89.

With the application running, you will be able to open a new or existing report in
the Embeddable Designer. After designing or editing a report, you can preview it
in the Crystal Report Viewer by clicking the Preview button. You can then return
to the Embeddable Designer by clicking the Design button. When you go back to
to edit the report, you can see those changes updated automatically by clicking the
Preview button again.

This tutorial contains the following steps:
� “Step 1: Creating the User Interface” on page 108
� “Step 2: Adding member variables and member functions” on page 110
� “Step 3: Writing the code” on page 112
� “Step 4: Running the Embeddable Designer application” on page 116.

Step 1: Creating the User Interface
In this step, you will create a Dialog-based MFC.EXE application and add the
components, and controls for the application.

1 Using the AppWizard, create a starter Dialog-based MFC application. The
main dialog will display reports in Embeddable Designer and the Crystal
Report Viewer.
� Project Name: Embeddable_Designer
� Application Class Name: CEmbeddable_DesignerApp
� Dialog Class Name: CEmbeddable_DesignerDlg

2 Add the Embeddable Designer Control and the Crystal Report Viewer Control
through the Components and Controls Gallery dialog box. The controls are in
the Registered ActiveX Controls folder:
� Embeddable Crystal Reports 8.5 Designer Control
� Crystal Report Viewer Control

3 Add the following controls from the Toolbox to
IDD_EMBEDDABLE_DESIGNER_DIALOG (Embeddable Designer dialog):

� six buttons
� Embeddable Crystal Reports 8.5 Designer
� Crystal Report Viewer
108 Crystal Reports Developer’s Guide

9 Programming the Embeddable Crystal Reports Designer Control
4 Set the properties for the Embeddable Designer dialog and its controls:
� IDD_EMBEDDABLE_DESIGNER_DIALOG (Create, open, save, design

and preview reports):
� Caption: Embeddable Designer
� Height: 340
� Width: 540

� Embeddable Crystal Reports 8.5 Designer Control (Designs and edits
reports):
� Height: 300
� Left: 7
� Top: 7
� Width: 525

� Crystal Report Viewer:
� Height: 300
� Left: 7
� Top: 7
� Width: 525

Note: Either the Embeddable Designer or the Crystal Report Viewer will be
hidden depending on wether the user is designing or previewing a report.

� All Buttons (Common Properties):
� Align all Buttons to the bottom of the form
� Height: 14
� Width: 50

� Button1 (Creates a new report):
� ID: IDC_NEW_REPORT
� Caption: &New Report
� Left: 7

� Button2 (Opens an existing report):
� ID: IDC_OPEN_REPORT
� Caption: &Open Report
� Left: 66

� Button3 (Saves a report):
� ID: IDC_SAVE_REPORT
� Caption: &Save Report
� Left: 125

� Button4 (Shows the Crystal Report Viewer and hides the Embeddable
Designer.):
� ID: IDC_PREVIEW
� Caption: &Preview
� Left: 184
Crystal Reports Developer’s Guide 109

Creating a Microsoft Visual C++ sample application with the Embeddable Designer
� Button5 (Shows the Embeddable Designer and hides the Crystal Report
Viewer):
� ID: IDC_SHOW_DESIGNER
� Caption: &Design
� Left: 184

� Button6 (Exits the application):
� ID: IDCANCEL
� Caption: E&xit
� Left: 483

Step 2: Adding member variables and member functions
In this step, you will add the member variables for the controls on the Embeddable
Designer dialog and then add member functions, and member variables for the
CEmbeddable_DesignerDlg class.

This step is broken into 2 sections:
� “Adding member variables for the Embeddable Designer dialog controls” on

page 110
� “Adding member variables and functions to the CEmbeddable_Designer

class” on page 111

Adding member variables for the Embeddable Designer
dialog controls

Use the Class Wizard to create the member variables for the controls.

1 Create member variables for the controls on the Embeddable Designer dialog:
� Embeddable Designer Control:

� Control ID: IDC_EMBEDDABLECRYSTALREPORTSDESIGNERCTRL
� Type: CCRDesignerCtrl
� Member: m_Designer

� Crystal Report Viewer Control:
� Control ID: IDC_CRVIEWER1
� Type: CCrystalReportViewer4
� Member: m_Viewer

� New Report Button:
� Control ID: IDC_NEW_REPORT
� Type: CButton
� Member: m_NewReport

� Open Report Button:
� Control ID: IDC_OPEN_REPORT
110 Crystal Reports Developer’s Guide

9 Programming the Embeddable Crystal Reports Designer Control
� Type: CButton
� Member: m_OpenReport

� Save Report Button:
� Control ID: IDC_SAVE_REPORT
� Type: CButton
� Member: m_SaveReport

� Preview Button:
� Control ID: IDC_PREVIEW
� Type: CButton
� Member: m_Preview

� Design Button:
� Control ID: IDC_SHOW_DESIGNER
� Type: CButton
� Member: m_ShowDesigner

Adding member variables and functions
to the CEmbeddable_Designer class

Add the following member variables, and member functions to the
CEmbeddable_Designer class. The code for the functions will be added in “Step 3:
Writing the code” on page 112.

1 Create the following member variables.
� Application pointer for the Craxddrt Application Object:

� Variable Type: IApplicationPtr
� Variable Name: m_Application

� Report pointer for the Craxddrt Report Object:
� Variable Type: IReportPtr
� Variable Name: m_Report

2 Create the following member function:
� Function to create or open a report and initialize the controls on the

Embeddable Designer form.
� Function Type: void
� Function Declaration: InitReport(BOOL bNew)

3 Add a member function for the BN_CLICKED message of each of the
following buttons:
� New Report: (Click to create a new report)

� Member function name: OnNewReport
� Open Report: (Click to open an existing report)

� Member function name: OnOpenReport
Crystal Reports Developer’s Guide 111

Creating a Microsoft Visual C++ sample application with the Embeddable Designer
� Save Report: (Click to save the current report)
� Member function name: OnSaveReport

� Preview: (Click to Preview the current report)
� Member function name: OnPreview

� Design: (Click to edit the current report)
� Member function name: OnShowDesigner

Step 3: Writing the code
In this step, you will write the code for member functions added in “Step 2: Adding
member variables and member functions” on page 110; you will also add
directives and constants to the source and header files.

This step is broken into 2 sections:
� “Adding directives and constants to the source and header files” on page 112
� “Adding the code for the CEmbeddable_Designer class” on page 112

Adding directives and constants to the source and header files

Add the following directives and constants to the Source and Header files.

1 Add a constant to Embeddable_DesignerDlg.cpp.

���
�
��������������������
�����	��������������������
�����	

static const char BASED_CODE szFilter[] = "Crystal Reports|*.rpt||";

2 Add the directive to Embeddable_Designer.h

�������������������
���������� !�������"�#��������#�����������$������%������

#import "craxddrt.tlb" no_namespace

Note: Copy Craxddrt.tlb to your application directory. Craxddrt.tlb can be found
in the \Crystal Reports\Developer Files\include path, off the directory you
installed Crystal Reports to.

Adding the code for the CEmbeddable_Designer class

Type or insert the code for the member functions created in “Adding member
variables and functions to the CEmbeddable_Designer class” on page 111. The
CEmbeddable_DesignerDlg class handles the basic functionality of the
Embeddable Designer sample application. The class will handle all of the report
functionality including creating a new report or opening an existing report, and
displaying it in the Embeddable Designer or the Crystal Report Viewer. Once a
report is designed or edited it can be saved, previewed, or refreshed.

Note: Error handling is not included in the code samples.
112 Crystal Reports Developer’s Guide

9 Programming the Embeddable Crystal Reports Designer Control
1 Add the code to the OnInitDialog function.

����&��������������
���������'��(���������
��������(�����

 // Embeddable Designer oontrol.

 m_Viewer.ShowWindow(SW_HIDE);

 m_Designer.ShowWindow(SW_SHOW);

2 Add the code for the InitReport function.

������������$������������������������������������ �)��������������������

// the Embeddable Designer and Crystal Report Viewer, with the Embeddable

// Designer visible and the Crystal Report Viewer hidden. Then the

// command buttons are initialized so that Save Report, and Preview are

// enabled, and Design is disabled and hidden.

void CEmbeddable_DesignerDlg::InitReport(BOOL bNew)

{

// Create a new report for designing and previewing.

if(bNew)

{

m_Application.CreateInstance("CrystalDesignRuntime.Application");

m_Report = m_Application->NewReport();

}

// Show an Open dialog box, and then browse and open a report

// for editing and previewing.

else

}

// Initialize the Open dialog box to only display the

// Crystal Report(.rpt) file type.

CFileDialog FileDlg(TRUE,"*.rpt",NULL, OFN_EXPLORER, szFilter);

// Show the Open dialog box

int iReturn = FileDlg.DoModal();

if(iReturn == IDOK)

{

// Get the name and path of the report file selected from the

// Open dialog box.

_bstr_t FileName(FileDlg.GetPathName().AllocSysString());

// Create the Application Object.

m_Application.CreateInstance("CrystalDesignRuntime.Application");

// Open the report selected from the Open dialog box.

m_Report = m_Application->OpenReport(FileName);

}

else if (iReturn = IDCANCEL)

{

// Terminate the execution of the function if the

// user cancels.

return;

}

}

Crystal Reports Developer’s Guide 113

Creating a Microsoft Visual C++ sample application with the Embeddable Designer
// Set the report object to the Embeddable Designer.

m_Designer.SetReportObject(m_Report);

// Set the report souce for the Crystal Reports Viewer

m_Viewer.SetReportSource(m_Report);

// Set the width of the report page to the width of the viewing area

m_Viewer.Zoom(1);

// View the report in the Crystal Reports Viewer control.

m_Viewer.ViewReport();

// Check if the Save Report button is enabled.

// If the button is disabled then enable the Save Report,

// and Preview buttons. The Save Report button will always

// be enabled once the first report is opened or created.

BOOL bEnabled;

bEnabled = m_DesignerSettings.IsWindowEnabled();

if(bEnabled == FALSE)

{

m_SaveReport.EnableWindow(TRUE);

m_Preview.EnableWindow(TRUE);

}

// Check if the Embeddable Designer is hidden.

// If it is hidden then hide the Design button, show the

// Preview button, hide the Crystal Reports Viewer, and

// show the Embeddable Designer.

if(!m_Designer.IsWindowVisible())

{

m_ShowDesigner.ShowWindow(SW_HIDE);

m_Preview.ShowWindow(SW_SHOW);

m_Viewer.ShowWindow(FALSE);

m_Designer.ShowWindow(TRUE);

}

}

3 Add the code for the OnNewReport function.

������������$���������

�����������������$������������������

// value of True to create a new report. Passing a value of

// False opens an existing report.

void CEmbeddable_DesignerDlg::OnNewReport()

{

InitReport(TRUE);

}

4 Add the code for the OnOpenReport function.

������������$���������

�����������������$����������������

// a value of False to open an existing report. Passing a

// value of True creates a new report.
114 Crystal Reports Developer’s Guide

9 Programming the Embeddable Crystal Reports Designer Control
void CEmbeddable_DesignerDlg::OnOpenReport()

{

InitReport(FALSE);

}

5 Add the code for the OnSaveReport function.

������������$�������������������������
�����	���������������$������

// report to the selected path and name.

void CEmbeddable_DesignerDlg::OnSaveReport()

{

// Initialize the Save As dialog box to only display the Crystal

// Report (.rpt) file type.

CFileDialog FileDlg(FALSE,"*.rpt",NULL,OFN_EXPLORER, szFilter);

// Show the Save As dialog box.

int iReturn = FileDlg.DoModal();

if(iReturn == IDOK)

{

// Get the path and name selected in the Save As dialog box.

_bstr_t FileName(FileDlg.GetPathName().AllocSysString());

// Save the report to the path and name specified in the

// Save As dialog box.

m_Designer.SaveReport(FileName);

}

else if(iReturn == IDCANCEL)

{

// Terminate the execution of the function if the

// user cancels.

return;

}

}

6 Add the code for the OnPreview function

������������$������*��������������������(����$����������������������

// source, hide the Preview button and the Embeddable Designer, and

// then show the Design button and the Crystal Report Viewer.

void CEmbeddable_DesignerDlg::OnPreview()

{

m_Viewer.RefreshEx(FALSE);

m_Preview.ShowWindow(SW_HIDE);

m_Designer.ShowWindow(SW_HIDE);

m_ShowDesigner.ShowWindow(SW_SHOW);

m_Viewer.ShowWindow(SW_SHOW);

}

Crystal Reports Developer’s Guide 115

Creating a Microsoft Visual C++ sample application with the Embeddable Designer
7 Add the code for the OnShowDesigner function.

������������$������*����������#�������$�������������������
��������

// Viewer, and show the Preview button and the Embeddable Designer.

void CEmbeddable_DesignerDlg::OnShowDesigner()

{

m_ShowDesigner.ShowWindow(SW_HIDE);

m_Viewer.ShowWindow(SW_HIDE);

m_Preview.ShowWindow(SW_SHOW);

m_Designer.ShowWindow(SW_SHOW);

}

Step 4: Running the Embeddable Designer application
In this step you will:
� create and design a new report in the Embeddable Designer
� view the report and any changes made to the report
� open and edit an existing report in the Embeddable Designer
� view the report and any changes made to the report
� save a report.

1 With the application running, click New Report.
An empty report will appear in the Embeddable Designer.

Note: The interface for the Embeddable Designer is the same one used for
ActiveX Designer reports created in the Microsoft Visual Basic IDE with the
Report Designer Component.

2 Design a new report to view.
If you are not familiar with the designer environment, refer to “Designing
reports in the Embeddable Designer” on page 117 for a step-by-step procedure
on creating a simple report off the Xtreme Sample Database ODBC data source.

3 Click Preview to view the report in the Crystal Report Viewer.

4 Click Design and make some changes to the report in the Embeddable
Designer. Then click Preview to see the changes in the Crystal Report Viewer .

5 Click Open. In the Open dialog box, select one of the sample reports and click
Open to view the report in the Embeddable Designer dialog.

6 Click Preview to view the report in the Crystal Report Viewer.

7 Click Design and make some changes to the report in the Embeddable
Designer. Then click Preview to see the changes in the Crystal Report Viewer .

8 Click Save Report.

9 In the Save As dialog box, browse to the desired directory, type the name you
want to save the report as, and then click Save.

Note: When you are designing a report the Preview button will be visible, and
when you are previewing a report the Design button will be visible.
116 Crystal Reports Developer’s Guide

9 Programming the Embeddable Crystal Reports Designer Control
Designing reports in the Embeddable Designer
Designing reports in the Embeddable Designer is an easy, intuitive process. In this
procedure, you will create a simple report off the Xtreme Sample Database ODBC
data source, which installs with Crystal Reports. The report will include a text
object, database fields, and a group.

The procedure contains the following steps:
� “Step 1: Adding a data source to the report” on page 117
� “Step 2: Adding fields and grouping to the report” on page 117

Step 1: Adding a data source to the report
In this step, you will use the Data Explorer to add the Customer table from the
ODBC data source Xtreme Sample Database.

1 On the Main Report tab, right-click Database Fields, and then click Add
Database to Report.

2 In the Data Explorer dialog box, expand ODBC and expand Xtreme Sample
Database; then select Customer, click Add, and click Close.

3 In the Visual Linking Expert dialog box, click OK.
The data source is now added to the report.

Step 2: Adding fields and grouping to the report
In this step you will add a text object to the Report Header section, the Customer
Name and Last Year’s Sales Fields to the Details section, and a group based on the
Region field.

1 On the Main Report tab, right-click in the white space to access the shortcut
menu.

2 On the shortcut menu, point to Insert, and then click Text Object.
An object frame appears with the Arrow pointer.

3 Drag the object frame to the Report Header section and click to release the text
object.

4 Double-click the text object to edit it, and then type: Xtreme Sales Report by
Region.

5 Expand Database Fields, and then expand Customer to view the database
fields.

6 Drag the Customer Name and Last Year’s Sales fields into the Details section.
A column heading for each field is automatically placed in the Page Header
section.
Crystal Reports Developer’s Guide 117

Designing reports in the Embeddable Designer
7 Click Insert Group on the toolbar.

8 In the Insert Group dialog box, select Region, and then click OK.

You are now ready to preview, export, print, or save the report. See Crystal Reports
Online Help (Crw.chm) for more information on designing reports in the Crystal
Reports environment.

Note: You can find the typical Crystal Report Designer commands (menu items
and toolbar buttons) on the shortcut menu of the Embeddable Designer. The
Embeddable Designer does not support the Chart Analyzer, Olap Grids, or Maps.
118 Crystal Reports Developer’s Guide

Migrating to the RDC from the OCX 10

This chapter illustrates the benefits of using the RDC for
integrating reporting functionality into your Visual Basic
applications. Learn how to migrate applications from the
OCX to the RDC to take advantage of the latest features
within Crystal Reports. Also included is an overview of the
RDC, its major components, object model, and a description
of its advanced features not available within the OCX.
Crystal Reports Developer’s Guide 119

Overview
Overview
Since it was first included in Microsoft Visual Basic, Crystal Reports has become
the world standard for desktop reporting and design. It has kept pace with
technological advancements by giving Visual Basic developers new ways to
integrate reporting into database applications. For example, the Crystal ActiveX
Control (OCX)—the tool most Visual Basic developers are familiar with—was first
introduced in 1995 with Crystal Reports 4.5. In June 1998, the Report Designer
Component (RDC) was launched. It’s a revolutionary tool designed specifically for
Visual Basic developers to create, view and modify reports within the Visual Basic
Integrated Development Environment (IDE).

Note: Visit the Seagate Software Developer Zone web site at
http://www.seagatesoftware.com/products/dev_zone.

Click Support to get links for finding documentation and knowledge base articles
about integrating reporting in your applications.

Summary
The RDC represents the latest in ActiveX technology and provides the following
advantages over the OCX:
� Integrates directly into the Visual Basic IDE.
� Allows you to create, view, and modify reports using Reports Experts and

familiar Visual Basic code.
� Exposes all Print Engine features and provides the greatest number of events

and objects to write code to.
� Performs better because it is a dual interface component with no wrapper

around the Print Engine.
� Takes advantage of code completion features that are easy to use in the Visual

Basic editor.
� Is fully compatible with Microsoft Visual Basic 5.0 and 6.0.

OCX
OCX is the development interface most Visual Basic developers are familiar with
because it has been a part of Crystal Reports since 1995. The OCX is based on an
older version of ActiveX technology. All of its properties and methods are accessed
through a single control. This limits your control of a report because it exposes only
a subset of the Crystal Report Print Engine’s functionality.

In addition, because the OCX acts a wrapper around the Print Engine, it’s less
efficient when loading a report because it can’t directly access the Print Engine.
120 Crystal Reports Developer’s Guide

10 Migrating to the RDC from the OCX
Code Comparison between the OCX and RDC
The RDC is based on the current generation of Microsoft ActiveX technology. It’s
the method Visual Basic developers must use to take full advantage of the features
within the Crystal Report Print Engine. Applications that are created using the
OCX will not be able to use the latest Crystal Reports technology. If you’re
planning future releases or new applications, and you’d like to use the most
powerful and flexible tool, you should consider using the RDC.

You can benefit from using the RDC by getting increased control over reports, such as:
� flexible formatting like passing text to a text object
� enhanced printer control
� creating report templates with unbound fields and then binding the fields to a

data source (or one of several data sources) at runtime
� report Variables that enable you to maintain state even if a report section

needs to fire multiple times for a given record
� the Create API which lets you create new objects, and even new reports, at

runtime using code
� the latest Print Engine features such as mapping and multiple parameters
� and most importantly, the ability to create, view and modify reports inside the

Visual Basic IDE.

OCX and RDC sample application comparison
Below are two applications which provide similar functionality—the first is
created using the OCX, the second uses the RDC. The RDC example shows how to
create a new application or convert an existing OCX application. With very few
exceptions, you can duplicate any properties and methods set by the OCX using
the RDC. Its properties and methods are very similar to the OCX, greatly reducing
the time it takes you to learn the product.

The major differences between the two applications include:
� Setting the Crystal-related Project References and Components.
� Setting or accessing objects to get to the properties or methods needed for the

report.
� The addition of the Crystal Report Viewer for viewing reports.

Sample Application General Description
A report with a subreport is created off the xtreme.mdb database.
� The main report contains the Customer table and a parameter field.
� The subreport contains the Orders table and a formula field.

The OCX application consists of a Form with three Command Buttons and the
OCX control.
Crystal Reports Developer’s Guide 121

OCX
Form Load:

� The Report is opened.
� The location of the database in the main report is changed.
� The parameter in the main report is set.
� The subreport is opened.
� The location of the database in the subreport is changed.
� A string is passed to the formula field in the subreport.

Command1

The report is previewed to screen.

Command2

� The printer is selected.
� The report is printed.

Command3

� The export options are set to export the report to a Rich Text Format.
� The report is exported.

A second form will be added when the application is created using the RDC. The
Crystal Report Viewer is added to the second form for viewing the report.

OCX sample application
Project|References:

No Crystal References required

Project|Components:

Crystal Report Control

Form1
Private Sub Form_Load()

Open the report.
CrystalReport1.ReportFileName = App.Path & "\OCX_to_RDC.rpt"

Change the location of the database.
CrystalReport1.DataFiles(0) = App.Path & "\xtreme.mdb"

Pass the parameter value to the main report.
CrystalReport1.ParameterFields(0) = "Param1;Main Report Param;True"

Pass the selection formula to the main report.
CrystalReport1.ReplaceSelectionFormula _

"{Customer.Last Year’s Sales} < 50000.00"
122 Crystal Reports Developer’s Guide

10 Migrating to the RDC from the OCX
Open the subreport.
CrystalReport1.SubreportToChange = "Sub1"

Change the location of the database in the subreport.
CrystalReport1.DataFiles(0) = App.Path & "\xtreme.mdb"

Pass the formula to the subreport.
CrystalReport1.Formulas(0) = "Formula1= " & "'Subreport Formula'"

Set CrystalReport1 back to using the main report.
CrystalReport1.SubreportToChange = ""

End Sub

Private Sub Command1_Click()

Set the destination to window.
CrystalReport1.Destination = crptToWindow

Preview the Report.
CrystalReport1.Action = 1

End Sub

Private Sub Command2_Click()

Set the printer driver.
CrystalReport1.PrinterDriver = “HPPCL5MS.DRV”

Set the printer port.
CrystalReport1.PrinterName = “HP LaserJet 4m Plus”

Set the printer name.
CrystalReport1.PrinterPort = “\\Vanprt\v1-1mpls-ts”

Set the destination to printer.
CrystalReport1.Destination = crptToPrinter

Print the report.
CrystalReport1.Action = 1

End Sub

Private Sub Command3_Click()

Set the Report to be exported to Rich Text Format.
CrystalReport1.PrintFileType = crptRTF

Set the Destination to Disk.
CrystalReport1.Destination = crptToFile

Set the path and name of the exported document.
CrystalReport1.PrintFileName = App.Path & "\OCXExport.rtf"

Export the report.
CrystalReport1.Action = 1

End Sub
Crystal Reports Developer’s Guide 123

OCX
RDC sample application
To migrate this application to the RDC, remove the OCX component from Form1,
and remove the Crystal Report Control from the Project|Components menu, in
addition to the steps below:

Project|References

Reference the Crystal Report 8 ActiveX Designer Runtime Library

Project|Components

Crystal Report Viewer Control

Add a second form

Add the Crystal Report Viewer Control to Form2

The properties and methods are accessed from individual objects. Following this
code sample is a detailed description on the RDC Automation Servers Object
Model.

The RDC will open a standard Crystal Report (.RPT). The Report could have been
Imported into or recreated in the RDC ActiveX Designer (.DSR).

Form1:

Declare the application object used to open the rpt file.

Dim crxApplication As New CRAXDRT.Application

Declare the report object.

Public Report As CRAXDRT.Report

Private Sub Form_Load()

Declare a DatabaseTable object for setting the location of the database. This object
will be used for the main and subreport.

Dim crxDatabaseTable As CRAXDRT.DatabaseTable

Declare a ParameterFieldDefinition object for passing parameters.

Dim crxParameterField As CRAXDRT.ParameterFieldDefinition

Declare a Report object to set to the subeport.

Dim crxSubreport As CRAXDRT.Report

Declare a FormulaFieldDefinition object for passing formulas.

Dim crxFormulaField As CRAXDRT.FormulaFieldDefinition

Open the report.

Set Report = crxApplication.OpenReport _

(App.Path & "\OCX_to_RDC.rpt", 1)
124 Crystal Reports Developer’s Guide

10 Migrating to the RDC from the OCX
Use a For Each loop to change the location of each DatabaseTable in the Reports
DatabaseTable Collection.

For Each crxDatabaseTable In Report.Database.Tables

crxDatabaseTable.Location = App.Path & "\xtreme.mdb"

Next crxDatabaseTable

Set crxParameterField to the first parameter in the parameterfields collection of the
main report.

Set crxParameterField = Report.ParameterFields.Item(1)

Pass the value to the main report.

crxParameterField.AddCurrentValue "Main Report Parameter"

Set crxSubreport to the subreport 'Sub1' of the main report. The subreport name
needs to be known to use this method.

Set crxSubreport = Report.OpenSubreport("Sub1")

Use a For Each loop to change the location of each DatabaseTable in the Subreport
Database Table Collection.

For Each crxDatabaseTable In

crxSubreport.Database.Tables

crxDatabaseTable.Location = App.Path &

"\xtreme.mdb"

Next crxDatabaseTable

Set crxFormulaField to the first formula in the formulafields collection of the
subreport.

Set crxFormulaField = crxSubreport.FormulaFields.Item(1)

Pass the formula to the subreport.

crxFormulaField.Text = "'Subreport Formula'"

End Sub

Private Sub Command1_Click()

Call Form2 to preview the Report.

Form2.Show

End Sub

Private Sub Command2_Click()

Select the printer for the report passing the Printer Driver, Printer Name and
Printer Port.

Report.SelectPrinter “HPPCL5MS.DRV”, “HP LaserJet 4m Plus”, “\\Vanprt\v1-

1mpls-ts”

Print the Report without prompting the user.

Report.PrintOut False

End Sub

Private Sub Command3_Click()
Crystal Reports Developer’s Guide 125

OCX
Declare an ExportOptions Object.

Dim crxExportOptions As CRAXDRT.ExportOptions

Set crxExportOptions to the Report object's ExportOptions.

Set crxExportOptions = Report.ExportOptions

Set the report to be exported to Rich Text Format.

crxExportOptions.FormatType = crEFTRichText

Set the destination type to disk.

crxExportOptions.DestinationType = crEDTDiskFile

Set the path and name of the exported document.

crxExportOptions.DiskFileName = App.Path & "\RDCExport.rtf"

Export the report without prompting the user.

Report.Export False

End Sub

Form2:

Private Sub Form_Load()

Set the Report source for the Crystal Report Viewer to the Report.

CRViewer1.ReportSource = Form1.Report

'View the Report

CRViewer1.ViewReport

End Sub

Private Sub Form_Resize()

This code resizes the Report Viewer control to Form2's dimensions.

CRViewer1.Top = 0

CRViewer1.Left = 0

CRViewer1.Height = ScaleHeight

CRViewer1.Width = ScaleWidth

End Sub
126 Crystal Reports Developer’s Guide

Working with Visual C++ and
Visual InterDev 11

This chapter illustrates how the Report Designer
Component (RDC) can be integrated using other
development languages. Included are examples in Visual
C++ and Visual Interdev.
Crystal Reports Developer’s Guide 127

Overview
Overview
While much of this Developer’s Guide is aimed at the Visual Basic developer, it is
important to note that the integration methods can be used in any environment
that supports COM. This chapter shows you how to use different integration
methods with other popular development environments.

Note: Visit the Seagate Software Developer Zone web site at
http://www.seagatesoftware.com/products/dev_zone

Click Support to get links for finding documentation and knowledge base articles
about the Report Designer Component.

Using the RDC with Visual C++
There are different ways to access the Report Designer Component (RDC) and any
other COM Automation server through Visual C++. This section describes how to
use the #import method.

Manipulating the RDC in Microsoft Visual C++ involves three steps:
� Define and instantiate a variable to be used to manipulate the RDC COM

object.
� Instantiate an actual instance of the RDC COM object and assign it to a

variable.
� Manipulate the Properties and Methods and then output the report.

The following section leads you through the details in each of these steps.

Printing a Report through Visual C++

To print a report through Visual C++

1 Open Visual C++ 6.0 if it isn’t already running.

2 From the File menu, select New. In the New dialog box select the MFC
AppWizard (exe) from the Projects tab. Type in MyRDC for the Project Name
and click OK.

3 Click the Finish button to accept the defaults for the MFC AppWizard and
then click OK in the New Project Information dialog box.

4 Add a reference to the RDC runtime object Model. From the File|Open menu
select the StdAfx.h file that was generated by the MFC App wizard and Click
Open. Add the following line after the #include directives:

#import “C:\Program Files\Seagate Software\Crystal Reports\Developer

Files\include\craxdrt.tlb”

Note: This is the default location of the RDC runtime object model (craxdrt.dll).
128 Crystal Reports Developer’s Guide

11 Working with Visual C++ and Visual InterDev
5 Before you can invoke an RDC object, you must initialize OLE. From the
File|Open menu, open the MyRDC.CPP file and add the following code:

struct InitOle {

InitOle() { ::CoInitialize(NULL); }

~InitOle() { ::CoUninitialize(); }

} _init_InitOle_;

6 For optional Variant parameters declare a dummy variable in the
MyRDC2.CPP class.

Variant dummy;

7 Add the following constants in the declaration’s of the MyRDC2.CPP class:
// The constants needed to create the Application and Report Objects COM

objects

const CLSID CLSID_Application =

{0xb4741fd0,0x45a6,0x11d1,{0xab,0xec,0x00,0xa0,0xc9,0x27,0x4b,0x91}};

const IID IID_IApplication =

{0x0bac5cf2,0x44c9,0x11d1,{0xab,0xec,0x00,0xa0,0xc9,0x27,0x4b,0x91}};

const CLSID CLSID_ReportObjects =

{0xb4741e60,0x45a6,0x11d1,{0xab,0xec,0x00,0xa0,0xc9,0x27,0x4b,0x91}};

const IID IID_IReportObjects =

{0x0bac59b2,0x44c9,0x11d1,{0xab,0xec,0x00,0xa0,0xc9,0x27,0x4b,0x91}};

Opening and Printing a Crystal Report through the RDC

To open and print a Crystal Report through the RDC

1 From the File|Open menu open the MyRDC.CPP file. Add the following code
to the MyRDC.InitInstance() method just before the return statement:

// A dummy variant

VariantInit (&dummy);

dummy.vt = VT_EMPTY;

HRESULT hr = S_OK;

IApplicationPtr m_Application = NULL;

IReportPtr m_Report = NULL;

// Specify the path to the report you want to print

_bstr_t ReportPath(“c:\\Program Files\\Seagate Software\\Crystal

Reports\\Samples\\En\\Reports\\General Business\\Inventory.rpt”);

_variant_t vtEmpty(DISP_E_PARAMNOTFOUND, VT_ERROR);

// Instantiate the IApplication object

hr = CoCreateInstance(CLSID_Application, NULL, CLSCTX_INPROC_SERVER ,

IID_IApplication, (void **) & CRAXDRT::IApplication);

//Open the Report using the OpenReport method

m_Report = m_Application->OpenReport(ReportPath, dummy)

//Print the Report to printer

m_Report->PrintOut(dummy, dummy, dummy, dummy

);

2 Finally, from the Build menu, select Rebuild All.
Crystal Reports Developer’s Guide 129

Using the RDC with Visual InterDev
There are hundreds of properties, methods, and events in the Report Designer
Component object model that you can manipulate through your code to meet the
demands of virtually any reporting requirement.

Using the RDC with Visual InterDev
The information below is directed at the developer of Web applications using the
Report Integration Controls.

Installation
When you install Crystal Reports, the Report Integration Controls are installed in
the folder SEAGATE SOFTWARE\SHARED\DESIGN TIME CONTROL by
default. Initially, to set up the Report Integration Controls as Design Time Controls
(DTC’s) for use in Visual InterDev 6.0, you need to:

1 Right-click in the Visual InterDev Toolbox. Choose Customize Toolbox from
the shortcut menu.

2 In the Customize Toolbox dialog box, select the Design Time Controls tab.
Check the two items ReportSource and ReportViewer.
The Report Integration Controls are comprised of the two DTC’s, ReportSource
and ReportViewer. You will find that these two DTC’s are added to the Visual
InterDev Toolbox. We will call them Report Source Control and Report Viewer
Control below.

Adding Reports to the Current Project

You must first add a report to the current Visual InterDev project before you can
apply any DTC’s to it.

Insert a Report Source Control (DTC)

When you insert a Report Source Control into your Web application, you actually
create an instance of the Report Source Control. Its name is ReportSourcei, where
i is the i-th instance of the Report Source Control, i=1,2,3…

When you right-click on an instance of a Report Source Control, you will invoke
the Report Source Properties dialog box.

The properties you can specify for an instance of a Report Source Control include
the following:

Attach a report to the Report Source Control

General information: In the General tab of the Report Source Properties dialog box,
you may attach a report to this instance of the Report Source Control from the list
of reports included in the current project.
130 Crystal Reports Developer’s Guide

11 Working with Visual C++ and Visual InterDev
Logon and test connectivity

Logon information for database: In the Accounts tab of the Report Source
Properties dialog box, you can specify the server and database names for each of
the tables used in the attached report, and test connectivity for each of these servers
after entering the logon information.

If the report is hosted on a Web Reports Server, you may leave the logon information
blank, which will in turn prompt the end user to enter the logon information. If the
report is hosted on an ASP server, then you must enter the logon information.

Specify how to handle parameters

Parameters: In the Parameters tab of the Report Source Properties dialog box, if the
report is hosted on a Web Reports Server, you may specify whether to prompt the
end user to choose from a default list of values, or enter a value for a parameter.

However, if the report is hosted on an ASP server, then you must choose a value
for each input parameter.

Specify selection formulas

Selection formula: In the Formula tab of the Report Source Properties dialog box, you
may specify your own selections formulas, or to modify existing selection formulas.

Insert a Report Viewer control (DTC)

When you insert a Report Viewer Control into your Web application, you create an
instance of the Report Viewer Control. Its name is ReportVieweri, where i is the
i-th instance of the Report Viewer Control, i=1,2,3…

When you right-click on an instance of a Report Viewer Control, you will invoke
the Report Viewer Properties dialog box.

Point the Viewer at the Report Source Control

The properties you can specify for an instance of a Report Viewer Control include:

General information: In the General tab of the Report Viewer Properties dialog box,
you can select an instance of a Report Source Control and attach it to this instance of
the Report Viewer Control. Upon clicking the Advanced button, you can specify a
virtual path which is an alias to the directory of the Report Viewer Control.

Options for end users: In the Options tab of the Report Viewer Properties dialog
box, you may specify the following for the end user:
� the Report Viewer to use, whether it is the Report Viewer for Java or Report

Viewer for ActiveX
� the language to use for the Report Viewer, depending on the fonts installed on

the current system
� the size of the Report Viewer
Crystal Reports Developer’s Guide 131

Using the RDC with Visual InterDev
� the ability to refresh report in the Report Viewer
� the ability to print report in the Report Viewer
� the ability to export report from the Report Viewer
� the ability to search in report in the Report Viewer
� the ability to drill down in report in the Report Viewer
� the ability to prompt on refresh of report in the Report Viewer
� the ability to generate group tree in the Report Viewer
� the ability to display group tree in the Report Viewer.

When you click OK, you’re finished.
132 Crystal Reports Developer’s Guide

Index
A
Active Data driver

database drivers, Crystal Active Data driver47
SetDataSource method48
using ...48

active data sources...42
ActiveX

Crystal Smart Viewers...91
ActiveX data object

changing data source location71
ActiveX Data Object (ADO)42
AddOLEDBSource

adding a field...72
AddReportVariables method76
ADO, changing data source location71
applets, Crystal Smart Viewer99
application object ..55
areas collection ..53
Automation Server, (craxdrt.dll) overview...............17

C
calculated fields ...23
collections

area collection...53
database tables ..55
FieldDefinitions collection.................................54
implicit reference ..67
index considerations...65
overview ..51–55
report objects, special considerations58
ReportObjects collection53
sections collection ..53, 59
special considerations ..58

components
using the best technology11

condition fields...85
changing sorting..85

cross-tabs
modifying at runtime ..70
objects, special considerations..........................58

CRViewer Object ...92
Crystal Data Objects (CDO)44
Crystal Data Source Type Library.............................44
Crystal Report Engine Automation Server

see Automation Server
Crystal Report Viewer, overview17

Crystal Smart Viewer
ActiveX .. 91
adding Java Bean .. 99
adding to VB project .. 92
appearance, controlling..................................... 96
application development................................... 90
connecting to Web Reports Server 97
events... 94
Java applet... 99
Java Bean... 98
moving through report 95
printing reports ... 96
secure data in reports... 93
specifying report ... 93
using in applications .. 89

D
data access

active data sources ... 42
data environments.. 45
data explorer ... 41
database drivers.. 47
overview.. 40

Data Access Objects (DAO)..................................... 43
Data Definition Files ... 45
Data Explorer ... 40
data objects

ActiveX (ADO).. 42
Crystal (CDO) ... 44
Data Access Objects (DAO).............................. 43
Remote (RDO) .. 43

data security ... 93
data sources

adding a field using AddOLEDBSource 72
ADO, changing location 71
connecting to OLEDB providers 74
connections, secure access session.................. 75
scope considerations.. 64
subreport, setting .. 72
tutorials.. 71–76

database drivers
methods, SetDataSource.................................... 48
overview.. 47
passing the recordset.. 47

database objects .. 54
considerations... 56
Crystal Reports Developer’s Guide 133

database tables collection .. 55
database tables objects, considerations 56
dual interface, considerations 65

E
Embeddable Designer

designing a report with 117
sample application

Visual Basic ... 102
Visual C++ ... 108

enhancements, Report Designer Component
version 8.5 .. 1

events
Crystal Smart Viewer.. 94
section object, Format event 60
special considerations.................................. 60–62

F
features

Crystal Report Viewer - freeze panes 8
Crystal Report Viewer - improved runtime
distribution .. 8

RDC - convert database driver............................ 6
RDC - Embeddable Designer 5
RDC - re-import subreports 7
RDC - Report Alerts.. 6
RDC summarize on hierarchical data 7
Web reporting - access XML data....................... 3
Web reporting - license manager 5
Web reporting - re-distribute ASP Web Report
Server ... 5

field kind
See summary fields

field object.. 56
FieldDefinitions collection 54
fields

See FieldDefinitions collection
fonts

see text objects
Format event for section object, considerations 60
formatting

conditional, section or report object 77
report variables, using.. 76
tutorial ... 76

formulas
passing at runtime, tutorial 78
selection, changing a subreport’s
record at runtime .. 79

selection, passing at runtime 78
formulas & selection formulas, tutorial 78–79

G
GetReportVariableValue method............................. 77
grouping, tutorial ... 80–82
groups

See report groups

I
implicit reference ...66

subreport ..69
through a collection ...67
tutorial ..69

Indices, considerations ..65
Initialize event ..62
installing RDC, Visual InterDev130
integration methods

overview ..10

J
Java Bean, Smart Viewer ...98
Java, Crystal Smart Viewer applet99

M
methods

AddReportVariable ...76
ADO, changing location71
GetReportVariableValue77
SetReportVariableValue77

O
Object Browser, VB, overview21
objects

application object ...55
cross-tab...58
CRViewer...92
database object ...54
database tables, considerations.........................56
field object...56
naming considerations64
OLE, tutorial ..84
overview ..51–55
report ..53
report object ..56
report, explicit reference66
report, implicit reference66
report, referenceing66–67
scope ..64
section, format event ..60
special considerations55–58
subreport, explicit reference68
subreport, referenceing69
subreport, special considerations......................57
text, changing contents tutorial87
text, displaying a calculated result tutorial.........88
text, maiking a simple chang tutorial87
text, simple and complex87
text, tutorial ...87

OCX
migrating to the RDC................................ 120–121
See also ActiveX

OLE objects,tutorial ...84
OLEDB, connecting to...74
134 Crystal Reports Developer’s Guide

overviews
Automation Server, (craxdrt.dll) 17
collections ... 51–55
data environments .. 45
database drivers .. 47
evolution of RDC .. 12–14
integration methods.. 10
mirgrating to RDC form OCX 120–121
objects.. 51–55
Properties Window... 21
RDC architecture .. 17
RDC components ... 19
rdc data access.. 40
RDC design time ... 16
RDC object model .. 50–51
RDC runtime ... 16
RDC, quick start.. 30
Report Designer .. 17
Report Viewer ... 17
subreport object .. 54
VB Object Browser ... 21

P
parameter fields, tutorial ... 82
passing a formula at runtime, tutorial 78
Pro Athlete Salaries sample applications 27
Properties Window, overview 21

Q
quick start using RDC, overview.............................. 30

R
RDC

adding to VB project .. 20
components, overview....................................... 19
Data Explorer .. 40
data sources... 42
design time, overview .. 16
dual interface considerations 65
migrating from the OCX........................... 120–121
objects, naming... 64
printing a report through Visual C++ 128
quick start

basic bullet points ... 30
create and modify report 33
open an existing report 31

quick start, overview .. 30
runtime, overview... 16
special considerations 64–69
using the Active Data driver 48
using the best .. 11
Visual C++, tutorial .. 128
Visual InterDev, tutorial130

RDC runtime engine
See Automation Server

recordset..47
referencing

report formula using formula name79
report objects...66–67
subreport objects...69
subreports ..68

Remote Data Objects (RDO)43
report collections, implicit reference67
Report Designer

overview ..17
report groups

adding a sort field ...81
adding new group ...81
changing condition field80
modifying sort direction at runtime82

report objects ..53, 56
formatting conditionally77
referencing ...66–67

Report Source
Visual InterDev, inserting a Control................130
Visual InterDev, pointing Report Viewer
to control ..131

report variables
AddReportVariable ...76
formatting ...76
GetReportVariableValue77
SetReportVariableValue77
tutorial ..76

Report Viewer, Visual InterDev,
inserting a control ...131

ReportObjects collection...53
reports

and secure data in Crystal Smart Viewer..........93
moving through with Crystal Smart Viewer95
printing with Crystal Smart Viewer96
sort field, adding new ...85
specifying with Crystal Smart Viewer93
templates, using unbound fields........................46

runtime code
modifying cross tabs ...70
passing a formula ..78
passing a selection formula................................78
Pro Athlete Salaries sample application27
selection formulas, changing
a subreport’s record ..79

S
sample application

Crystal ActiveX control in Visual Basic
OCX sample application.............................122

Embeddable Designer in Visual Basic102
Embeddable Designer in Visual C++..............108
RDC in Visual Basic......................................31, 33

RDC sample application124
Crystal Reports Developer’s Guide 135

sample applications... 22–27
ADO Connection Methods 22
Change Runtime Location of OLE Object 23
Employee Profiles ... 23
First Class Hotels .. 27
Inventory Demo.. 23
Load Picture Demo .. 23
Microsoft Office samples 23
No Data in Report Event.................................... 24
Printer Settings .. 24
Pro Athlete salaries... 27
RDC in Visual C++... 128
Report Object Creation API............................... 24
Report Variables ... 24
Report Wizard... 25
Search and Select Experts 25
Simple Application ... 22
Simple Demo .. 26
Unbound fields ... 26
Viewer ... 26
Viewer Runtime options 26
Xtreme Mountain Bikes 27

sample code
Crystal Report Viewer in VB Script................... 98
Crystal Report Viewer in Visual Basic 92- 97
RDC in Visual Basic 62, 72, 76, 77

Adding a data source and a field using
AddOLEDBSource 72

adding a group sort field 81
adding a new group to the report................ 81
adding a new sort field to a report 85
changing a subreport’s formula at runtime 79
changing an ADO data source location 71
changing summary field kind 86
changing the existing group’s

condition field... 80
changing the existing sort’s condition field 85
connecting to a secure access session 75
displaying a calculated result 88
explicit reference - an object in the report. 66
explicit reference - an object in

the subreport ... 68
explicit reference - the subreport itself 68
formatting a section or report object

conditionally ... 77
implicit reference .. 69
implicit reference - through a collection 67
implicit referrence - cycling through

the sections.. 66
making a simple text change 87
modifying a cross-tab at runtime 70
modifying a group’s sort direction

at runtime .. 82
passing a formula at runtime 78

passing a selection formula at runtime78
referencing a report formula using

the formula name..79
scope considerations.....................................64
setting the location of an OLE object84
subreport - Active data connection to a PC or

SQL database...74
subreport - Native connection to

a PC database ..73
subreport - Native connection to

a SQL database ...73
subreport - ODBC connection to

a PC or SQL database73
The Application Object55
The CrossTabObject......................................58
The Database and Database Tables Object .56
The Field Object ..56
The ReportObject ..56
The ReportObjects Collection58
The Sections Collection59
The Subreport Object....................................57
Working with parameter fields82

samples ...22
complex applications ...27
reports ..22

sections collection ...53
special considerations ..59

sections, formatting conditionally77
secure access session

connecting to ..75
SetReportVariableValue method77
Smart Viewers

see Crystal Smart Viewer
sort fields, adding to report85
sorting

condition field, change existing85
sort field, adding ...85
tutorial ..85

special considerations ...64–69
dual interfaces ...65
explicit object reference, in a report66
explicit object reference, in a subreport68
explicit reference, the subreport itself68
implicit object reference66
implicit object reference, through a collection .67
indices..65
object nameing ...64
referencing objects, in a report66–67
referencing objects, in a subreport69
scope ..64

subreport objects
overview ..54
referencing ...68
special considerations ..57
136 Crystal Reports Developer’s Guide

subreports
changing selection formula at runtime............. 79
data source, setting ... 72
explicit reference .. 68
implicit reference.. 69
selection formulas, changing a
subreport’s record ... 79

summary fields
changing field kind, tutorial 86
tutorial.. 86

T
Terminate event ... 62
text objects

changing contents, tutorial 87
displaying a calculated result tutorial............... 88
making a simple change tutorial....................... 87
simple and complex ... 87
tutorial.. 87

tutorials
complex applications (samples) 27
cross-tabs, modifying at runtime 70
data sources... 71–76
data sources, active data connection,
to PC or SQL database 74

data sources, connecting to secure
Access session ... 75

data sources, native connection,
to PC database... 73

data sources, native connection,
to SQL database .. 73

data sources, ODBCconnection, to PC or SQL
database ... 73

data sources, setting for a subreport 72
formatting .. 76
formatting, section or report object
conditionally ... 77

formatting, using report variables 76
formulas & selection formulas..................... 78–79
formulas, referencing a report formula name 79
getting additional information 20–28
grouping... 80–82
how to add the RDC to VB project 30
how to create and modify a report 33
how to open an existing report 31
implicit reference.. 69
report groups, adding a sort field 81
report groups, adding new group 81
report groups, changing existing
condition field ... 80

report groups, modifying sort direction
at runtiime ... 82

sample reports... 22
selection formula, changing at runtime
for subreport .. 79

sorting ...85
summary fields ..86
summary fields, changing field kind86
text object, displaying a calculated result88
text object, making a simple change87
text objects...87
text objects, changing the contents...................87
Visual Basic, creating an application with
the Embeddable Designer102

Visual C++, creating an application with
the Embeddable Designer108

Visual C++, opening & printing a Crystal Report
through the RDC ...129

Visual C++, printing a report128
Visual C++, using the RDC128
Visual InterDev, adding reports to project130
Visual InterDev, using the RDC130

V
Visual Basic

adding Crystal Smart Viewer to project92
adding the RDC to your project20
events, Initialize ..62
events, Terminate ..62

Visual C++
opening & printing a Crystal Report
through the RDC, tutorial129

using the RDC, tutorial128
Visual InterDev

adding reports to project tutorial.....................130
installing the RDC ...130
Report Source Control

attaching a report...130
inserting ..130
logon and test conectivity...........................131
specify how to handle parameters131
specify selection formula131

Report Source, pointing a Report Viewer
to control ..131

Report Viewer Control, inserting.....................131
usiing the RDC, tutorial....................................130

W
Web Reports Server, connecting

to Crystal Smart Viewer..97
Crystal Reports Developer’s Guide 137

	Chapter 1: What’s New for Developers
	Web Reporting 2
	Report Designer Component 8.5 (RDC) 5
	Crystal Report Viewer 8
	Additional information 8

	Chapter 2: Integration Methods
	Overview 10
	Integration methods 10
	The Report Designer Component 11
	The Best Tool for Your Needs 14

	Chapter 3: Introducing the Report Designer Component
	The Report Designer Component 16
	How to Get Additional Information 20

	Chapter 4: Quick Start for using the RDC
	Overview 30
	Bullet Point Quick Start 30
	Open an existing report 31
	Create and modify a report 33

	Chapter 5: RDC Data Access
	Overview 40
	The Data Explorer 41
	Active Data Sources 42
	Data Environments 45
	Database Drivers 47

	Chapter 6: Understanding the RDC Object Model
	Overview 50
	A high level overview 50
	The next level 51
	The Primary Objects and Collections 51
	The Application object 53
	The Report object 53
	The Database Object 54
	Object Considerations 55
	Collection Considerations 58
	Event Considerations 60

	Chapter 7: RDC Programming
	Special Considerations 64
	Two methods to access an object in a report or subreport 66
	Runtime examples 70
	Working with Cross-Tabs 70
	Working with Data sources 71
	Working with Formatting 76
	Working with Formulas/Selection Formulas 78
	Working with Grouping 80
	Working with parameter fields 82
	Working with OLE objects 84
	Working with Sorting 85
	Working with Summary Fields 86
	Working with Text Objects 87

	Chapter 8: Programming the Crystal Report Viewers
	Enhancements to the Report Viewer 90
	Application Development with Crystal Report Viewers 90
	Crystal Report Viewer for ActiveX 91
	The Crystal Report Viewer Java Bean 98

	Chapter 9: Programming the Embeddable Crystal Reports Designer Control
	Overview 102
	Creating a Microsoft Visual Basic sample application with the Embeddable Designer 102
	Creating a Microsoft Visual C++ sample application with the Embeddable Designer 108
	Designing reports in the Embeddable Designer 117

	Chapter 10: Migrating to the RDC from the OCX
	Overview 120
	OCX 120

	Chapter 11: Working with Visual C++ and Visual InterDev
	Overview 128
	Using the RDC with Visual C++ 128
	Using the RDC with Visual InterDev 130

	What’s New for Developers 1
	Integration Methods 2
	Introducing the Report Designer Component 3
	Quick Start for using the RDC 4
	RDC Data Access 5
	Understanding the RDC Object Model 6
	RDC Programming 7
	Programming the Crystal Report Viewers 8
	Programming the Embeddable Crystal Reports Designer Control 9
	Migrating to the RDC from the OCX 10
	Working with Visual C++ and Visual InterDev 11

